Epitaxial growth of borophene on substrates

Progress in Surface Science - Tập 98 - Trang 100704 - 2023
Wenhui Li1,2, Kehui Wu1,2,3, Lan Chen1,2,3
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China

Tài liệu tham khảo

Novoselov, 2004, Electric field effect in atomically thin carbon films, Science, 306, 666, 10.1126/science.1102896 Butler, 2013, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano, 7, 2898, 10.1021/nn400280c Xu, 2013, Graphene-like two-dimensional materials, Chem. Rev., 113, 3766, 10.1021/cr300263a Zhang, 2005, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature, 438, 201, 10.1038/nature04235 Novoselov, 2005, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197, 10.1038/nature04233 Novoselov, 2007, Room-temperature quantum Hall effect in graphene, Science, 315, 10.1126/science.1137201 Lee, 2008, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321, 385, 10.1126/science.1157996 Nair, 2008, Fine structure constant defines visual transparency of graphene, Science, 320, 10.1126/science.1156965 Cao, 2018, Unconventional superconductivity in magic-angle graphene superlattices, Nature, 556, 43, 10.1038/nature26160 Zhao, 2020, Two-dimensional graphene-like Xenes as potential topological materials, APL. Mater., 8, 10.1063/1.5135984 Vogt, 2012, Silicene: compelling experimental evidence for graphenelike two-dimensional silicon, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.155501 Chen, 2012, Evidence for Dirac fermions in a honeycomb lattice based on silicon, Phys. Rev. Lett., 109, 10.1103/PhysRevLett.109.056804 Feng, 2012, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett., 12, 3507, 10.1021/nl301047g Chen, 2013, Spontaneous symmetry breaking and dynamic phase transition in monolayer silicene, Phys. Rev. Lett., 110, 10.1103/PhysRevLett.110.085504 Dávila, 2014, Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene, New J. Phys, 16, 10.1088/1367-2630/16/9/095002 Li, 2014, Buckled germanene formation on Pt(111), Adv. Mater., 26, 4820, 10.1002/adma.201400909 J. Gou, Q. Zhong, S.X. Sheng, W.B. Li, P. Cheng, H. Li, L. Chen, K.H. Wu, Strained monolayer germanene with 1 × 1 lattice on Sb(111), 2D Mater. 3 (4) (2016) 045005. Zhu, 2015, Epitaxial growth of two-dimensional stanene, Nat. Mater., 14, 1020, 10.1038/nmat4384 Gou, 2017, Strain-induced band engineering in monolayer stanene on Sb(111), Phys. Rev. Mater., 1 Li, 2013, Two-dimensional transition metal honeycomb realized: Hf on Ir(111), Nano Lett., 13, 4671, 10.1021/nl4019287 Li, 2014, Black phosphorus field-effect transistors, Nat. Nanotechnol., 9, 372, 10.1038/nnano.2014.35 Ji, 2016, Two-dimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun., 7, 1, 10.1038/ncomms13352 Reis, 2017, Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material, Science, 357, 287, 10.1126/science.aai8142 He, 2019, Structural and electronic properties of atomically thin Bismuth on Au(111), Surf. Sci., 679, 147, 10.1016/j.susc.2018.09.005 J. Gou, L.J. Kong, X.Y. He, Y. L. Huang, J.T. Sun, S. Meng, K.H. Wu, L. Chen, A.T.S. Wee, The effect of moiré superstructures on topological edge states in twisted bismuthene homojunctions, Sci. Adv. 6 (23) (2020) eaba2773. Mannix, 2015, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science, 350, 1513, 10.1126/science.aad1080 Feng, 2016, Experimental realization of two-dimensional boron sheets, Nat. Chem., 8, 563, 10.1038/nchem.2491 Tao, 2015, Silicene field-effect transistors operating at room temperature, Nat. Nanotechnol., 10, 227, 10.1038/nnano.2014.325 Adamska, 2017, Fine-tuning the optoelectronic properties of freestanding borophene by strain, ACS Omega, 2, 8290, 10.1021/acsomega.7b01232 Du, 2017, Phosphorene quantum dot saturable absorbers for ultrafast fiber lasers, Sci. Rep., 7, 1 Zuo, 2019, Fully spin-polarized open and closed nodal lines in β-borophene by magnetic proximity effect, Phys. Rev. B, 100, 10.1103/PhysRevB.100.115423 Wu, 2014, Prediction of near-room-temperature quantum anomalous Hall effect on honeycomb materials, Phys. Rev. Lett., 113, 10.1103/PhysRevLett.113.256401 Rastgou, 2017, DNA sequencing by borophene nanosheet via an electronic response: a theoretical study, Microelectron. Eng., 169, 9, 10.1016/j.mee.2016.11.012 Qiu, 2018, Omnipotent phosphorene: a next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications, Chem. Soc. Rev., 47, 5588, 10.1039/C8CS00342D Jiang, 2016, Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries, Nano Energy, 23, 97, 10.1016/j.nanoen.2016.03.013 Wu, 2012, Two-dimensional boron monolayer sheets, ACS Nano, 6, 7443, 10.1021/nn302696v Tang, 2007, Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.115501 Penev, 2012, Polymorphism of two-dimensional boron, Nano Lett., 12, 2441, 10.1021/nl3004754 Piazza, 2014, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets, Nat. Commun., 5, 1, 10.1038/ncomms4113 Mak, 2010, Atomically thin MoS2: a new direct-gap semiconductor, Phys. Rev. Lett., 105, 10.1103/PhysRevLett.105.136805 Zhao, 2013, Evolution of electronic structure in atomically thin sheets of WS2 and WSe2, ACS Nano, 7, 791, 10.1021/nn305275h Wang, 2014, Chemical vapor deposition growth of crystalline monolayer MoSe2, ACS Nano, 8, 5125, 10.1021/nn501175k Watanabe, 2004, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 3, 404, 10.1038/nmat1134 Peng, 2016, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations, J. Mater. Chem. C, 4, 3592, 10.1039/C6TC00115G Novotný, 2017, A computational study of hydrogen detection by borophene, J. Mater. Chem. C, 5, 5426, 10.1039/C7TC00976C Vishkayi, 2018, Freestanding χ3-borophene nanoribbons: a density functional theory investigation, Phys. Chem. Chem. Phys., 20, 10493, 10.1039/C7CP08671G Feng, 2017, Dirac fermions in borophene, Phys. Rev. Lett., 118, 10.1103/PhysRevLett.118.096401 Zhao, 2016, Phonon-mediated superconductivity in borophenes, Appl. Phys. Lett., 108, 10.1063/1.4953775 Gao, 2017, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B, 95, 10.1103/PhysRevB.95.024505 Zhang, 2017, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater., 27, 1605059, 10.1002/adfm.201605059 Yang, 2017, Interfacial properties of borophene contacts with two-dimensional semiconductors, Phys. Chem. Chem. Phys., 19, 23982, 10.1039/C7CP04570K Mannix, 2018, Borophene as a prototype for synthetic 2D materials development, Nat. Nanotechnol., 13, 444, 10.1038/s41565-018-0157-4 Oganov, 2009, Boron: a hunt for superhard polymorphs, J. Superhard. Mater., 31, 285, 10.3103/S1063457609050013 Zhang, 2017, Two-dimensional boron: structures, properties and applications, Chem. Soc. Rev., 46, 6746, 10.1039/C7CS00261K Boustani, 1997, Systematic ab initio investigation of bare boron clusters: determination of the geometry and electronic structures of Bn (n = 2–14), Phys. Rev. B, 55, 16426, 10.1103/PhysRevB.55.16426 I. Boustani, Structure and stability of small boron clusters. A density functional theoretical study, Chem. Phys. Lett. 240 (1-3) (1995) 135–140. Zhai, 2003, Hepta-and octacoordinate boron in molecular wheels of eight-and nine-atom boron clusters: observation and confirmation, Angew. Chem. Int. Ed., 42, 6004, 10.1002/anie.200351874 Zhai, 2003, Hydrocarbon analogues of boron clusters-planarity, aromaticity and antiaromaticity, Nat. Mater., 2, 827, 10.1038/nmat1012 Alexandrova, 2006, All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry, Coord. Chem. Rev., 250, 2811, 10.1016/j.ccr.2006.03.032 Kawai, 1991, Instability of the B12 icosahedral cluster: rearrangement to a lower energy structure, J. Chem. Phys., 95, 1151, 10.1063/1.461145 Boustani, 1997, New quasi-planar surfaces of bare boron, Surf. Sci., 370, 355, 10.1016/S0039-6028(96)00969-7 Liu, 2013, From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation, Sci. Rep., 3, 1, 10.1038/srep03238 Yang, 2008, Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties, Phys. Rev. B, 77, 041402(R), 10.1103/PhysRevB.77.041402 Kiran, 2005, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes, Proc. Natl. Acad. Sci., 102, 961, 10.1073/pnas.0408132102 Li, 2014, The B35 cluster with a double-hexagonal vacancy: a new and more flexible structural motif for borophene, J. Am. Chem. Soc., 136, 12257, 10.1021/ja507235s Li, 2014, [B30]-: a quasiplanar chiral boron cluster, Angew. Chem. Int. Ed., 53, 5540, 10.1002/anie.201402488 Zhai, 2014, Observation of an all-boron fullerene, Nat. Chem., 6, 727, 10.1038/nchem.1999 Szwacki, 2007, B80 fullerene: an ab initio prediction of geometry, stability, and electronic structure, Phys. Rev. Lett., 98 Evans, 2005, Electronic and mechanical properties of planar and tubular boron structures, Phys. Rev. B, 72, 10.1103/PhysRevB.72.045434 Kunstmann, 2006, Broad boron sheets and boron nanotubes: an ab initio study of structural, electronic, and mechanical properties, Phys. Rev. B, 74, 10.1103/PhysRevB.74.035413 Liu, 2013, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chem. Int. Ed., 52, 3156, 10.1002/anie.201207972 Zhang, 2015, Two-dimensional boron monolayers mediated by metal substrates, Angew. Chem., 127, 13214, 10.1002/ange.201505425 Zhang, 2017, Gate-voltage control of borophene structure formation, Angew. Chem., 129, 15623, 10.1002/ange.201705459 Tang, 2009, Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures, Phys. Rev. B, 80, 10.1103/PhysRevB.80.134113 Sun, 2017, Two-dimensional boron crystals: structural stability, tunable properties, fabrications and applications, Adv. Funct. Mater., 27, 1603300, 10.1002/adfm.201603300 Zhang, 2016, Polyphony in B flat, Nat. Chem., 8, 525, 10.1038/nchem.2521 Zhang, 2012, Boron sheet adsorbed on metal surfaces: Structures and electronic properties, J. Phys. Chem. C, 116, 18202, 10.1021/jp303616d Jiang, 2018, Borophene and defective borophene as potential anchoring materials for lithium-sulfur batteries: a first-principles study, J. Mater. Chem. A, 6, 2107, 10.1039/C7TA09244J Ji, 2018, A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy, Adv. Mater., 30, 1803031, 10.1002/adma.201803031 Coleman, 2013, Liquid exfoliation of defect-free graphene, Acc. Chem. Res., 46, 14, 10.1021/ar300009f Zhang, 2002, Synthesis of crystalline boron nanowires by laser ablation, Chem. Commun., 23, 2806, 10.1039/b207449d Tsai, 2016, Fabrication of multilayer borophene on insulator structure, Small, 12, 5251, 10.1002/smll.201601915 Yan, 2014, Chemical vapor deposition of graphene single crystals, Acc. Chem. Res., 47, 1327, 10.1021/ar4003043 Tai, 2015, Synthesis of atomically thin boron films on copper foils, Angew. Chem. Int. Ed., 54, 15473, 10.1002/anie.201509285 Cao, 2001, Well-aligned boron nanowire arrays, Adv. Mater., 13, 1701, 10.1002/1521-4095(200111)13:22<1701::AID-ADMA1701>3.0.CO;2-Q Ciuparu, 2004, Synthesis of pure boron single-wall nanotubes, J. Phys. Chem. B, 108, 3967, 10.1021/jp049301b Tian, 2010, One-dimensional boron nanostructures: Prediction, synthesis, characterizations, and applications, Nanoscale, 2, 1375, 10.1039/c0nr00051e Zhang, 1997, Atomistic processes in the early stages of thin-film growth, Science, 276, 377, 10.1126/science.276.5311.377 Xia, 2017, Seed-mediated growth of colloidal metal nanocrystals, Angew. Chem. Int. Ed., 56, 60, 10.1002/anie.201604731 Xu, 2016, The nucleation and growth of borophene on the Ag(111) surface, Nano Res., 9, 2616, 10.1007/s12274-016-1148-0 Zhang, 2016, Substrate-induced nanoscale undulations of borophene on silver, Nano Lett., 16, 6622, 10.1021/acs.nanolett.6b03349 Zhong, 2017, Metastable phases of 2D boron sheets on Ag(111), J. Phy. Condens. Matter, 29, 10.1088/1361-648X/aa5165 Liu, 2019, Geometric imaging of borophene polymorphs with functionalized probes, Nat. Commun., 10, 1 Campbell, 2018, Resolving the chemically discrete structure of synthetic borophene polymorphs, Nano Lett., 18, 2816, 10.1021/acs.nanolett.7b05178 Aufray, 2010, Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene, Appl. Phys. Lett., 96, 10.1063/1.3419932 Feng, 2016, Structure and quantum well states in silicene nanoribbons on Ag(110), Surf. Sci., 645, 74, 10.1016/j.susc.2015.10.037 Zhong, 2017, Synthesis of borophene nanoribbons on Ag(110) surface, Phys. Rev. Mater., 1, 021001(R), 10.1103/PhysRevMaterials.1.021001 Liu, 2018, Intermixing and periodic self-assembly of borophene line defects, Nat. Mater., 17, 783, 10.1038/s41563-018-0134-1 Wang, 2020, Realization of regular-mixed quasi-1D borophene chains with long-range order, Adv. Mater., 32, 2005128, 10.1002/adma.202005128 Wu, 2019, Large-area single-crystal sheets of borophene on Cu(111) surfaces, Nat. Nanotechnol., 14, 44, 10.1038/s41565-018-0317-6 Wu, 2019, Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron, npj Quantum Mater., 4, 1, 10.1038/s41535-019-0181-0 Wu, 2022, Micrometre-scale single-crystalline borophene on a square-lattice Cu(100) surface, Nat. Chem., 14, 377, 10.1038/s41557-021-00879-9 Kiraly, 2019, Borophene synthesis on Au(111), ACS Nano, 13, 3816, 10.1021/acsnano.8b09339 Larbalestier, 2001, Strongly linked current flow in polycrystalline forms of the superconductor MgB2, Nature, 410, 186, 10.1038/35065559 Buzea, 2001, Review of the superconducting properties of MgB2, Supercond. Sci. Technol., 14, R115, 10.1088/0953-2048/14/11/201 Song, 2019, Two-dimensional Anti-Van’t Hoff/Le Bel array AlB6 with high stability, unique motif, triple dirac cones, and superconductivity, J. Am. Chem. Soc., 141, 3630, 10.1021/jacs.8b13075 Gao, 2019, Electron-phonon coupling in a honeycomb borophene grown on Al(111) surface, Phys. Rev. B, 100, 10.1103/PhysRevB.100.024503 Li, 2018, Experimental realization of honeycomb borophene, Sci. Bull., 63, 282, 10.1016/j.scib.2018.02.006 Shirodkar, 2018, Honeycomb boron: alchemy on aluminum pan?, Sci. Bull., 63, 270, 10.1016/j.scib.2018.02.019 Zhu, 2019, How is honeycomb borophene stabilized on Al(111)?, J. Phys. Chem. C., 123, 14858, 10.1021/acs.jpcc.9b03447 Geng, 2020, Experimental evidence of monolayer AlB2 with symmetry-protected Dirac cones, Phys. Rev. B, 101, 10.1103/PhysRevB.101.161407 Coraux, 2008, Structural coherency of graphene on Ir(111), Nano Lett., 8, 565, 10.1021/nl0728874 N’Diaye, 2008, Structure of epitaxial graphene on Ir(111), New J. Phys., 10 Vinogradov, 2019, Single-phase borophene on Ir(111): formation, structure, and decoupling from the support, ACS Nano, 13, 14511, 10.1021/acsnano.9b08296 Cao, 2018, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature, 556, 80, 10.1038/nature26154 Marchenko, 2018, Extremely flat band in bilayer graphene, Sci. Adv., 4, eaau0059, 10.1126/sciadv.aau0059 Maher, 2014, Tunable fractional quantum Hall phases in bilayer graphene, Science, 345, 61, 10.1126/science.1252875 Wang, 2020, Correlated electronic phases in twisted bilayer transition metal dichalcogenides, Nat. Mater., 19, 861, 10.1038/s41563-020-0708-6 de la Barrera, 2018, Tuning Ising superconductivity with layer and spin-orbit coupling in two-dimensional transition-metal dichalcogenides, Nat. Commun., 9, 1427, 10.1038/s41467-018-03888-4 Cui, 2019, Transport evidence of asymmetric spin-orbit coupling in few-layer superconducting 1Td-MoTe2, Nat. Commun., 10, 1, 10.1038/s41467-019-09995-0 Regan, 2020, Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices, Nature, 579, 359, 10.1038/s41586-020-2092-4 Tang, 2020, Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices, Nature, 579, 353, 10.1038/s41586-020-2085-3 C. Jin, E.C. Regan, A. Yan, M. Iqbal Bakti Utama, D.Q. Wang, S. Zhao, Y. Qin, S. Yang, Z. Zheng, S. Shi, K. Watanabe, T. Taniguchi, S. Tongay, A. Zettl, F. Wang, Observation of moiré excitons in WSe2/WS2 heterostructure superlattices, Nature 567 (7746) (2019) 76–80. Alexeev, 2019, Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures, Nature, 567, 81, 10.1038/s41586-019-0986-9 Seyler, 2019, Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers, Nature, 567, 66, 10.1038/s41586-019-0957-1 Tran, 2019, Evidence for moiré excitons in van der Waals heterostructures, Nature, 567, 71, 10.1038/s41586-019-0975-z Anderson, 1972, More is different: broken symmetry and the nature of the hierarchical structure of science, Science, 177, 393, 10.1126/science.177.4047.393 Gao, 2018, Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding, FlatChem, 7, 48, 10.1016/j.flatc.2017.08.008 Nakhaee, 2018, Dirac nodal line in bilayer borophene: Tight-binding model and low-energy effective Hamiltonian, Phys. Rev. B, 98, 10.1103/PhysRevB.98.115413 Li, 2019, From two- to three-dimensional van der Waals layered structures of boron crystals: an Ab initio study, ACS Omega, 4, 8015, 10.1021/acsomega.9b00534 Xu, 2019, Ideal nodal line semimetal in a two-dimensional boron bilayer, J. Phys. Chem. C, 123, 4977, 10.1021/acs.jpcc.8b12385 Zhao, 2016, Superconductivity in two-dimensional boron allotropes, Phys. Rev. B, 93, 10.1103/PhysRevB.93.014502 Chen, 2022, Synthesis of bilayer borophene, Nat. Chem., 14, 25, 10.1038/s41557-021-00813-z Xu, 2022, Quasi-freestanding bilayer borophene on Ag(111), Nano Lett., 22, 3488, 10.1021/acs.nanolett.1c05022 Ye, 2017, Toward a mechanistic understanding of vertical growth of van der Waals stacked 2D materials: a multiscale model and experiments, ACS Nano, 11, 12780, 10.1021/acsnano.7b07604 Liu, 2022, Borophene synthesis beyond the single-atomic-layer limit, Nat. Mater., 21, 35, 10.1038/s41563-021-01084-2 Sutter, 2021, Large-scale layer-by-layer synthesis of borophene on Ru(0001), Chem. Mater., 33, 8838, 10.1021/acs.chemmater.1c03061 Sutter, 2011, Chemical vapor deposition and etching of high-quality monolayer hexagonal boron nitride films, ACS Nano, 5, 7303, 10.1021/nn202141k Feng, 2018, Discovery of 2D anisotropic Dirac cones, Adv. Mater., 30, 1704025, 10.1002/adma.201704025 Feng, 2016, Direct evidence of metallic bands in a monolayer boron sheet, Phys. Rev. B, 94, 10.1103/PhysRevB.94.041408 Liu, 2019, First-principles calculations on the intrinsic resistivity of borophene: anisotropy and temperature dependence, J. Mater. Chem. C, 7, 986, 10.1039/C8TC05269G Tsafack, 2016, Thermomechanical analysis of two-dimensional boron monolayers, Phys. Rev. B, 93, 10.1103/PhysRevB.93.165434 Lherbier, 2016, Electronic and optical properties of pristine and oxidized borophene, 2D Mater., 3, 10.1088/2053-1583/3/4/045006 Kong, 2019, One-dimensional nearly free electron states in borophene, Nanoscale, 11, 15605, 10.1039/C9NR03792F Zhang, 2018, Universal scaling of intrinsic resistivity in two-dimensional metallic borophene, Angew. Chem. Int. Ed., 57, 4585, 10.1002/anie.201800087 Hasan, 2010, Colloquium: topological insulators, Rev. Mod. Phys., 82, 3045, 10.1103/RevModPhys.82.3045 Armitage, 2018, Weyl and Dirac semimetals in three- dimensional solids, Rev. Mod. Phys., 90, 10.1103/RevModPhys.90.015001 Feng, 2019, Superstructure-induced splitting of Dirac cones in silicene, Phys. Rev. Lett., 122, 10.1103/PhysRevLett.122.196801 Feng, 2017, Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si, Nat. Commun., 8, 1, 10.1038/s41467-017-01108-z Zhou, 2014, Semimetallic two-dimensional boron allotrope with massless Dirac fermions, Phys. Rev. Lett., 112, 10.1103/PhysRevLett.112.085502 Ma, 2016, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, Nano Lett., 16, 3022, 10.1021/acs.nanolett.5b05292 Yi, 2017, Honeycomb boron allotropes with Dirac cones: a true analogue to graphene, J. Phys. Chem. Lett., 8, 2647, 10.1021/acs.jpclett.7b00891 Penev, 2016, Can two-dimensional boron superconduct?, Nano Lett., 16, 2522, 10.1021/acs.nanolett.6b00070 Sachdeva, 2021, First-principles study of linear and nonlinear optical properties of multi-layered borophene, Comput., 9, 101 Adamska, 2018, First-principles investigation of borophene as a monolayer transparent conductor, J. Phys. Chem. C, 122, 4037, 10.1021/acs.jpcc.7b10197 C. Lian, S.Q. Hu, J. Zhang, C. Cheng, Z. Y, S.W. Gao, S. Meng, Integrated plasmonics: broadband Dirac plasmons in borophene, Phys. Rev. Lett. 125 (11) (2020) 116802. Jablan, 2009, Plasmonics in graphene at infrared frequencies, Phys. Rev. B, 80, 10.1103/PhysRevB.80.245435 Kortus, 2001, Superconductivity of metallic boron in MgB2, Phys. Rev. Lett., 86, 4656, 10.1103/PhysRevLett.86.4656 Choi, 2002, The origin of the anomalous superconducting properties of MgB2, Nature, 418, 758, 10.1038/nature00898 An, 2001, Superconductivity of MgB2: covalent bonds driven metallic, Phys. Rev. Lett., 86, 4366, 10.1103/PhysRevLett.86.4366 Sheng, 2019, Raman spectroscopy of two-dimensional borophene sheets, ACS Nano, 13, 4133, 10.1021/acsnano.8b08909 C. Cheng, J.T. Sun, H. Liu, H.X. Fu, J. Zhang, X.R. Chen, S. Meng, Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping, 2D Mater. 4 (2) (2017) 025032. Xiao, 2016, Enhanced superconductivity by strain and carrier-doping in borophene: A first principles prediction, Appl. Phys. Lett., 109, 10.1063/1.4963179 Wu, 2016, Lithium-Boron (Li-B) monolayers: first-principles cluster expansion and possible two-dimensional superconductivity, ACS Appl. Mater. Interfaces., 8, 2526, 10.1021/acsami.5b09949 Wang, 2017, Lattice defects and the mechanical anisotropy of borophene, J. Phys. Chem. C, 121, 10224, 10.1021/acs.jpcc.7b02582 Mortazavi, 2016, Mechanical responses of borophene sheets: a first principles study, Phys. Chem. Chem. Phys., 18, 27405, 10.1039/C6CP03828J Wang, 2016, High anisotropy of fully hydrogenated borophene, Phys. Chem. Chem. Phys., 18, 31424, 10.1039/C6CP06164H Wang, 2016, Strain effects on borophene: ideal strength, negative Possion’s ratio and phonon instability, New J. Phys., 18, 10.1088/1367-2630/18/7/073016 Peng, 2017, Stability and strength of atomically thin borophene from first principles calculations, Mater. Res. Lett., 5, 399, 10.1080/21663831.2017.1298539 Zhou, 2016, Two-dimensional magnetic boron, Phys. Rev. B, 93, 10.1103/PhysRevB.93.085406 Zhong, 2018, Electronic and mechanical properties of few-layer borophene, Phys. Rev. B, 98, 10.1103/PhysRevB.98.054104 M.G. Cuxart, K. Seufert, V. Chesnyak, W.A. Waqas, A. Robert, M.L. Bocquet, G.S. Duesberg, H. Sachdev, W. Auwärter, Borophenes made easy, Sci. Adv. 7 (45) (2021) eabk1490. Ahn, 2016, Prevention of transition metal dichalcogenide photodegradation by encapsulation with h-BN layers, ACS Nano, 10, 8973, 10.1021/acsnano.6b05042 Li, 2017, Direct observation of the layer-dependent electronic structure in phosphorene, Nat. Nanotechnol., 12, 21, 10.1038/nnano.2016.171 Liu, 2017, Mechanochemistry of one-dimensional boron: structural and electronic transitions, J. Am. Chem. Soc., 139, 2111, 10.1021/jacs.6b12750 Corso, 2004, Boron nitride nanomesh, Science, 303, 217, 10.1126/science.1091979 Sachdev, 2010, BN analogues of graphene: On the formation mechanism of boronitrene layers–solids with extreme structural anisotropy, Diam. Relat. Mater., 19, 1027, 10.1016/j.diamond.2010.03.021 F.H. Farwick zum Hagen, D.M. Zimmermann, C.C. Silva, C. Schlueter, N. Atodiresei, W. Jolie, A.J. Martínez-Galera, D. Dombrowski, U.A. Schröder, M. Will, P. Lazić, V. Caciuc, S. Blügel, T.L. Lee, T. Michely, C. Busse, Structure and growth of hexagonal boron nitride on Ir(111), ACS Nano 10 (12) (2016) 11012–11026. Allan, 2007, Tunable self-assembly of one-dimensional nanostructures with orthogonal directions, Nanoscale Res. Lett., 2, 94, 10.1007/s11671-006-9036-2 M. Petrović, U. Hagemann, M. Horn-von Hoegen, F.J.M. Heringdorf, Microanalysis of single-layer hexagonal boron nitride islands on Ir(111), Appl. Surf. Sci. 420 (2017) 504–510. Deng, 2018, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature, 563, 94, 10.1038/s41586-018-0626-9