Epigenetic regulation of neuronal dendrite and dendritic spine development

Frontiers in Biology - Tập 5 Số 4 - Trang 304-323 - 2010
Richard D. Smrt1, Xinyu Zhao2
1University of New Mexico School of Medicine
2Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akbarian S, Chen R Z, Gribnau J, Rasmussen T P, Fong H, Jaenisch R, Jones E G (2001). Expression pattern of the Rett syndrome gene MeCP2 in primate prefrontal cortex. Neurobiol Dis, 8(5): 784–791

Alvarez V A, Sabatini B L (2007). Anatomical and physiological plasticity of dendritic spines. Annu Rev Neurosci, 30: 79–97

Amir R E, Van den Veyver I B, Wan M, Tran C Q, Francke U, Zoghbi H Y (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet, 23(2): 185–188

Antar L N, Afroz R, Dictenberg J B, Carroll R C, Bassell G J (2004). Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci, 24(11): 2648–2655

Antar L N, Dictenberg J B, Plociniak M, Afroz R, Bassell G J (2005). Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav, 4(6): 350–359

Armstrong D, Dunn J K, Antalffy B, Trivedi R (1995). Selective dendritic alterations in the cortex of Rett syndrome. J Neuropathol Exp Neurol, 54(2): 195–201

Armstrong D D (2002). Neuropathology of Rett syndrome. Ment Retard Dev Disabil Res Rev, 8(2): 72–76

Ashley C T, Sutcliffe J S, Kunst C B, Leiner H A, Eichler E E, Nelson D L, Warren S T (1993). Human and murine FMR-1: alternative splicing and translational initiation downstream of the CGG-repeat. Nat Genet, 4(3): 244–251

Ashraf S I, McLoon A L, Sclarsic SM, Kunes S (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell, 124(1): 191–205

Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen H F, John R M, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher A G (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 8(5): 532–538

Bagni C, Greenough W T (2005). From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome. Nat Rev Neurosci, 6(5): 376–387

Bakker C E, Verheij C, Willemsen R, Helm R, Oerlemans F, Vermey M, Bygrave A, Hoogeveen A, Oostr B A, Reyniers E, De Boule K, D’Hooge R, Cras P, van Velzen D, Nagels G, Martin J J, De Deyn P P, Darby J K, Willems P J (1994). Fmr1 knockout mice: a model to study fragile X mental retardation. Cell, 78(1): 23–33

Balasubramaniyan V, Boddeke E, Bakels R, Küst B, Kooistra S, Veneman A, Copray S (2006). Effects of histone deacetylation inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience, 143(4): 939–951

Barbato C, Giorgi C, Catalanotto C, Cogoni C (2008). Thinking about RNA? MicroRNAs in the brain. Mamm Genome, 19(7–8): 541–551

Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan S K, Handa V, Döderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007). Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 445(7128): 671–675

Barski A, Cuddapah S, Cui K, Roh T Y, Schones D E, Wang Z, Wei G, Chepelev I, Zhao K (2007). High-resolution profiling of histone methylations in the human genome. Cell, 129(4): 823–837

Bassell G J, Warren S T (2008). Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron, 60(2): 201–214

Battaglia A (2005). The inv dup(15) or idic(15) syndrome: a clinically recognisable neurogenetic disorder. Brain Dev, 27(5): 365–369

Belichenko P V, Hagberg B, Dahlström A (1997). Morphological study of neocortical areas in Rett syndrome. Acta Neuropathol, 93(1): 50–61

Belichenko P V, Masliah E, Kleschevnikov A M, Villar A J, Epstein C J, Salehi A, Mobley W C (2004). Synaptic structural abnormalities in the Ts65Dn mouse model of Down Syndrome. J Comp Neurol, 480(3): 281–298

Belichenko P V, Oldfors A, Hagberg B, Dahlström A (1994). Rett syndrome: 3-D confocal microscopy of cortical pyramidal dendrites and afferents. Neuroreport, 5(12): 1509–1513

Benzer S (1967). Behavioral mutants of drosophila isolated by countercurrent distribution. Proc Natl Acad Sci U S A, 58(3): 1112–1119

Berg J S, Brunetti-Pierri N, Peters S U, Kang S H, Fong C T, Salamone J, Freedenberg D, Hannig V L, Prock L A, Miller D T, Raffalli P, Harris D J, Erickson R P, Cunniff C, Clark G D, Blazo M A, Peiffer D A, Gunderson K L, Sahoo T, Patel A, Lupski J R, Beaudet A L, Cheung S W (2007). Speech delay and autism spectrum behaviors are frequently associated with duplication of the 7q11.23 Williams-Beuren syndrome region. Genet Med, 9(7): 427–441

Bernstein B E, Meissner A, Lander E S (2007). The mammalian epigenome. Cell, 128(4): 669–681

Bernstein B E, Mikkelsen T S, Xie X, Kamal M, Huebert D J, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber S L, Lander E S (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125(2): 315–326

Bestor T H (2000). The DNA methyltransferases of mammals. Hum Mol Genet, 9(16): 2395–2402

Bestor T H, Tycko B (1996). Creation of genomic methylation patterns. Nat Genet, 12(4): 363–367

Bhattacharya S K, Ramchandani S, Cervoni N, Szyf M (1999). A mammalian protein with specific demethylase activity for mCpG DNA. Nature, 397(6720): 579–583

Bienvenu T, Chelly J (2006). Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized. Nat Rev Genet, 7(6): 415–426

Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16(1): 6–21

Bourne J N, Sorra K E, Hurlburt J, Harris K M (2007). Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices. Hippocampus, 17(1): 1–4

Boyer L A, Plath K, Zeitlinger J, Brambrink T, Medeiros L A, Lee T I, Levine S S, Wernig M, Tajonar A, Ray M K, Bell G W, Otte A P, Vidal M, Gifford D K, Young R A, Jaenisch R (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441(7091): 349–353

Brennecke J, Hipfner D R, Stark A, Russell R B, Cohen S M (2003). bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113(1): 25–36

Busard H L, Renier WO, Gabreëls F J, Jaspar H H, Slooff J L, Janssen A J, Van Haelst U J (1987). Lafora disease: a quantitative morphological and biochemical study of the cerebral cortex. Clin Neuropathol, 6(1): 1–6

Bushati N, Cohen SM (2007). microRNA functions. Annu Rev Cell Dev Biol, 23: 175–205

Cajal S R (1891). Sur la structure de l’ecorce cérébrale de quelques mammifères. Cellule, 7: 125–176

Caudy A A, Myers M, Hannon G J, Hammond S M (2002). Fragile Xrelated protein and VIG associate with the RNA interference machinery. Genes Dev, 16(19): 2491–2496

Chahrour M, Zoghbi H Y (2007). The story of Rett syndrome: from clinic to neurobiology. Neuron, 56(3): 422–437

Chang S, Bray SM, Li Z, Zarnescu D C, He C, Jin P, Warren S T (2008). Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol, 4(4): 256–263

Chang S, Johnston R J Jr, Frøkjaer-Jensen C, Lockery S, Hobert O (2004). MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature, 430(7001): 785–789

Chen C Z, Li L, Lodish H F, Bartel D P (2004). MicroRNAs modulate hematopoietic lineage differentiation. Science, 303(5654): 83–86

Chen L, Toth M (2001). Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience, 103(4): 1043–1050

Chen R Z, Akbarian S, Tudor M, Jaenisch R (2001). Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet, 27(3): 327–331

Cohen S, Greenberg M E (2008). Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol, 24: 183–209

Collins A L, Levenson J M, Vilaythong A P, Richman R, Armstrong D L, Noebels J L, David Sweatt J, Zoghbi H Y (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet, 13(21): 2679–2689

Comery T A, Harris J B, Willems P J, Oostra B A, Irwin S A, Weiler I J, Greenough W T (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci U S A, 94(10): 5401–5404

Day M, Wang Z, Ding J, An X, Ingham C A, Shering A F, Wokosin D, Ilijic E, Sun Z, Sampson A R, Mugnaini E, Deutch A Y, Sesack S R, Arbuthnott G W, Surmeier D J (2006). Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci, 9(2): 251–259

De Carlos J A, Borrell J (2007). A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience. Brain Res Rev, 55(1): 8–16

Detich N, Theberge J, Szyf M (2002). Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem, 277(39): 35791–35794

Dillon C, Goda Y (2005). The actin cytoskeleton: integrating form and function at the synapse. Annu Rev Neurosci, 28: 25–55

Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, Francke U (2008). SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One, 3: e1709

Dockendorff T C, Su H S, McBride S M, Yang Z, Choi C H, Siwicki K K, Sehgal A, Jongens T A (2002). Drosophila lacking dfmr1 activity show defects in circadian output and fail to maintain courtship interest. Neuron, 34(6): 973–984

Duan X, Chang J H, Ge S, Faulkner R L, Kim J Y, Kitabatake Y, Liu X B, Yang C H, Jordan J D, Ma D K, Liu C Y, Ganesan S, Cheng H J, Ming G L, Lu B, Song H (2007). Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 130(6): 1146–1158

Edbauer D, Neilson J R, Foster K A, Wang C F, Seeburg D P, Batterton M N, Tada T, Dolan B M, Sharp P A, Sheng M (2010). Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron, 65(3): 373–384

Egger G, Liang G, Aparicio A, Jones P A (2004). Epigenetics in human disease and prospects for epigenetic therapy. Nature, 429(6990): 457–463

Elsea S H, Girirajan S (2008). Smith-Magenis syndrome. Eur J Hum Genet, 16(4): 412–421

Fan G, Beard C, Chen R Z, Csankovszki G, Sun Y, Siniaia M, Biniszkiewicz D, Bates B, Lee P P, Kuhn R, Trumpp A, Poon C, Wilson C B, Jaenisch R (2001). DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci, 21(3): 788–797

Feng J, Zhou Y, Campbell S L, Le T, Li E, Sweatt J D, Silva A J, Fan G (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 13(4): 423–430

Ferrer I, Fabregues I, Coll J, Ribalta T, Rives A (1984). Tuberous sclerosis: a Golgi study of cortical tuber. Clin Neuropathol, 3(2): 47–51

Ferrer I, Gullotta F (1990). Down’s syndrome and Alzheimer’s disease: dendritic spine counts in the hippocampus. Acta Neuropathol, 79(6): 680–685

Fiala J C, Feinberg M, Popov V, Harris K M (1998). Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci, 18(21): 8900–8911

Fiala J C, Spacek J, Harris KM (2002). Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev, 39(1): 29–54

Filipowicz W, Bhattacharyya S N, Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 9(2): 102–114

Fiore R, Siegel G, Schratt G (2008). MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta, 1779(8): 471–478

Gage F H (2002). Neurogenesis in the adult brain. J Neurosci, 22(3): 612–613

Galvez R, Gopal A R, Greenough W T (2003). Somatosensory cortical barrel dendritic abnormalities in a mouse model of the fragile X mental retardation syndrome. Brain Res, 971(1): 83–89

Gemelli T, Berton O, Nelson E D, Perrotti L I, Jaenisch R, Monteggia L M (2006). Postnatal loss of methyl-CpG binding protein 2 in the forebrain is sufficient to mediate behavioral aspects of Rett syndrome in mice. Biol Psychiatry, 59(5): 468–476

Golshani P, Hutnick L, Schweizer F, Fan G (2005). Conditional Dnmt1 deletion in dorsal forebrain disrupts development of somatosensory barrel cortex and thalamocortical long-term potentiation. Thalamus Relat Syst, 3(3): 227–233

Gothelf D, Feinstein C, Thompson T, Gu E, Penniman L, Van Stone E, Kwon H, Eliez S, Reiss A L (2007). Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. Am J Psychiatry, 164(4): 663–669

Gräff J, Mansuy I M (2009). Epigenetic dysregulation in cognitive disorders. Eur J Neurosci, 30(1): 1–8

Greenough WT, Klintsova A Y, Irwin S A, Galvez R, Bates K E, Weiler I J (2001). Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci U S A, 98(13): 7101–7106

Grewal S I, Elgin S C (2007). Transcription and RNA interference in the formation of heterochromatin. Nature, 447(7143): 399–406

Grossman AW, Aldridge GM, Weiler I J, Greenough WT (2006). Local protein synthesis and spine morphogenesis: Fragile X syndrome and beyond. J Neurosci, 26(27): 7151–7155

Grutzendler J, Kasthuri N, Gan W B (2002). Long-term dendritic spine stability in the adult cortex. Nature, 420(6917): 812–816

Guan J S, Haggarty S J, Giacometti E, Dannenberg J H, Joseph N, Gao J, Nieland T J, Zhou Y, Wang X, Mazitschek R, Bradner J E, DePinho R A, Jaenisch R, Tsai L H (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459(7243): 55–60

Guy J, Hendrich B, Holmes M, Martin J E, Bird A (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat Genet, 27(3): 322–326

Hagberg B, Aicardi J, Dias K, Ramos O (1983). A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann Neurol, 14(4): 471–479

Harris K M, Kater S B (1994). Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci, 17: 341–371

Higashi Y, Murayama S, Pentchev P G, Suzuki K (1993). Cerebellar degeneration in the Niemann-Pick type C mouse. Acta Neuropathol, 85(2): 175–184

Hinton V J, Brown WT, Wisniewski K, Rudelli R D (1991). Analysis of neocortex in three males with the fragile X syndrome. Am J Med Genet, 41(3): 289–294

Holliday R, Pugh J E (1975). DNA modification mechanisms and gene activity during development. Science, 187(4173): 226–232

Hoogenraad C C, Koekkoek B, Akhmanova A, Krugers H, Dortland B, Miedema M, van Alphen A, Kistler WM, Jaegle M, Koutsourakis M, Van Camp N, Verhoye M, van der Linden A, Kaverina I, Grosveld F, De Zeeuw C I, Galjart N (2002). Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nat Genet, 32(1): 116–127

Hotta Y, Benzer S (1970). Genetic dissection of the Drosophila nervous system by means of mosaics. Proc Natl Acad Sci U S A, 67(3): 1156–1163

Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage F H (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A, 101(47): 16659–16664

Hull C, Hagerman R J (1993). A study of the physical, behavioral, and medical phenotype, including anthropometric measures, of females with fragile X syndrome. Am J Dis Child, 147(11): 1236–1241

Hutnick L K, Golshani P, Namihira M, Xue Z, Matynia A, Yang X W, Silva A J, Schweizer F E, Fan G (2009). DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum Mol Genet, 18(15): 2875–2888

Huttenlocher P R (1970). Dendritic development and mental defect. Neurology, 20(4): 381

Huttenlocher P R (1974). Dendritic development in neocortex of children with mental defect and infantile spasms. Neurology, 24(3): 203–210

Irwin S A, Patel B, Idupulapati M, Harris J B, Crisostomo R A, Larsen B P, Kooy F, Willems P J, Cras P, Kozlowski P B, Swain R A, Weiler I J, Greenough W T (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet, 98(2): 161–167

Ishizuka A, Siomi M C, Siomi H (2002). A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev, 16(19): 2497–2508

Ivey K N, Muth A, Arnold J, King F W, Yeh R F, Fish J E, Hsiao E C, Schwartz R J, Conklin B R, Bernstein H S, Srivastava D (2008). MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell, 2(3): 219–229

Jaenisch R, Bird A (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 33(Suppl): 245–254

Jin P, Zarnescu D C, Ceman S, Nakamoto M, Mowrey J, Jongens T A, Nelson D L, Moses K, Warren S T (2004). Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nat Neurosci, 7(2): 113–117

Johansson B B, Belichenko P V (2002). Neuronal plasticity and dendritic spines: effect of environmental enrichment on intact and postischemic rat brain. J Cereb Blood Flow Metab, 22(1): 89–96

Johnston R J, Hobert O (2003). A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature, 426(6968): 845–849

Jones P A, Baylin S B (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet, 3(6): 415–428

Jugloff D G, Jung B P, Purushotham D, Logan R, Eubanks J H (2005). Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2. Neurobiol Dis, 19(1–2): 18–27

Kanellopoulou C, Muljo S A, Kung A L, Ganesan S, Drapkin R, Jenuwein T, Livingston D M, Rajewsky K (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 19(4): 489–501

Kaufmann W E, Moser H W (2000). Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex, 10(10): 981–991

Kishi N, Macklis J D (2004). MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci, 27(3): 306–321

Klose R J, Bird A P (2006). Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci, 31(2): 89–97

Kobrynski L J, Sullivan K E (2007). Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet, 370(9596): 1443–1452

Kooy R F (2003). Of mice and the fragile X syndrome. Trends Genet, 19(3): 148–154

Kooy R F, D’Hooge R, Reyniers E, Bakker C E, Nagels G, De Boulle K, Storm K, Clincke G, De Deyn P P, Oostra B A, Willems P J (1996). Transgenic mouse model for the fragile X syndrome. Am J Med Genet, 64(2): 241–245

Krichevsky A M, Sonntag K C, Isacson O, Kosik K S (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24(4): 857–864

Krogan N J, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards D P, Beattie B K, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J (2003). Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol, 23(12): 4207–4218

Lachner M, O’sullivan R J, Jenuwein T (2003). An epigenetic road map for histone lysine methylation. J Cell Sci, 116(Pt 11): 2117–2124

Lalande M, Calciano M A (2007). Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci, 64(7–8): 947–960

Lee J A, Lupski J R (2006). Genomic rearrangements and gene copynumber alterations as a cause of nervous system disorders. Neuron, 52(1): 103–121

Lee T I, Jenner R G, Boyer L A, Guenther MG, Levine S S, Kumar RM, Chevalier B, Johnstone S E, Cole M F, Isono K, Koseki H, Fuchikami T, Abe K, Murray H L, Zucker J P, Yuan B, Bell G W, Herbolsheimer E, Hannett N M, Sun K, Odom D T, Otte A P, Volkert T L, Bartel D P, Melton D A, Gifford D K, Jaenisch R, Young R A (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 125(2): 301–313

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim V N (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956): 415–419

Leucht C, Stigloher C, Wizenmann A, Klafke R, Folchert A, Bally-Cuif L (2008). MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci, 11(6): 641–648

Lewis D A, Glantz L A, Pierri J N, Sweet R A (2003). Altered cortical glutamate neurotransmission in schizophrenia: evidence from morphological studies of pyramidal neurons. Ann N Y Acad Sci, 1003: 102–112

Li X, Zhao X (2008). Epigenetic regulation of mammalian stem cells. Stem Cells Dev, 17(6): 1043–1052

Lim MK, Kawamura T, Ohsawa Y, Ohtsubo M, Asakawa S, Takayanagi A, Shimizu N (2007). Parkin interacts with LIM Kinase 1 and reduces its cofilin-phosphorylation activity via ubiquitination. Exp Cell Res, 313(13): 2858–2874

Lin Y J, Seroude L, Benzer S (1998). Extended life-span and stress resistance in the Drosophila mutant methuselah. Science, 282(5390): 943–946

Ling S C, Fahrner P S, Greenough WT, Gelfand V I (2004). Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Proc Natl Acad Sci U S A, 101(50): 17428–17433

Liu C, Teng Z Q, Santistevan N J, Szulwach K E, Guo W, Jin P, Zhao X (2010). Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell, 6(5): 433–444

Liu C, Zhao X (2009). MicroRNAs in adult and embryonic neurogenesis. Neuromolecular Med, 11(3): 141–152

Logue S F, Paylor R, Wehner J M (1997). Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci, 111(1): 104–113

Lugli G, Torvik V I, Larson J, Smalheiser N R (2008). Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem, 106(2): 650–661

Luikenhuis S, Giacometti E, Beard C F, Jaenisch R (2004). Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice. Proc Natl Acad Sci U S A, 101(16): 6033–6038

Luo Y, Shan G, Guo W, Smrt R D, Johnson E B, Li X, Pfeiffer R L, Szulwach K E, Duan R, Barkho B Z, Li W, Liu C, Jin P, Zhao X (2010). Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet, 6(4): e1000898

Lush MJ, Li Y, Read D J, Willis A C, Glynn P (1998). Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem J, 332(Pt 1): 1–4

Ma D K, Jang M H, Guo J U, Kitabatake Y, Chang M L, Pow-Anpongkul N, Flavell R A, Lu B, Ming G L, Song H (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science, 323(5917): 1074–1077

Machado-Salas J P (1984). Abnormal dendritic patterns and aberrant spine development in Bourneville’s disease—a Golgi survey. Clin Neuropathol, 3(2): 52–58

Marin-Padilla M (1972). Structural abnormalities of the cerebral cortex in human chromosomal aberrations: a Golgi study. Brain Res, 44(2): 625–629

Marin-Padilla M (1976). Pyramidal cell abnormalities in the motor cortex of a child with Down’s syndrome. A Golgi study. J Comp Neurol, 167(1): 63–81

Marsh J L, Thompson L M (2006). Drosophila in the study of neurodegenerative disease. Neuron, 52(1): 169–178

Matarazzo V, Cohen D, Palmer A M, Simpson P J, Khokhar B, Pan S J, Ronnett G V (2004). The transcriptional repressor Mecp2 regulates terminal neuronal differentiation. Mol Cell Neurosci, 27(1): 44–58

Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu W Y, MacDonald J F, Wang J Y, Falls D L, Jia Z (2002). Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron, 35(1): 121–133

Michel C I, Kraft R, Restifo L L (2004). Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants. J Neurosci, 24(25): 5798–5809

Min K T, Benzer S (1999). Preventing neurodegeneration in the Drosophila mutant bubblegum. Science, 284(5422): 1985–1988

Mineur Y S, Sluyter F, de Wit S, Oostra B A, Crusio W E (2002). Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus, 12(1): 39–46

Miura K, Kishino T, Li E, Webber H, Dikkes P, Holmes G L, Wagstaff J (2002). Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol Dis, 9(2): 149–159

Morales J, Hiesinger P R, Schroeder A J, Kume K, Verstreken P, Jackson F R, Nelson D L, Hassan B A (2002). Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron, 34(6): 961–972

Moretti P, Levenson JM, Battaglia F, Atkinson R, Teague R, Antalffy B, Armstrong D, Arancio O, Sweatt J D, Zoghbi H Y (2006). Learning and memory and synaptic plasticity are impaired in a mouse model of Rett syndrome. J Neurosci, 26(1): 319–327

Morris R G, Garrud P, Rawlins J N, O’Keefe J (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868): 681–683

Nimchinsky E A, Oberlander A M, Svoboda K (2001). Abnormal development of dendritic spines in FMR1 knock-out mice. J Neurosci, 21(14): 5139–5146

Nishino J, Kim I, Chada K, Morrison S J (2008). Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell, 135(2): 227–239

Nomura T, Kimura M, Horii T, Morita S, Soejima H, Kudo S, Hatada I (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Hum Mol Genet, 17(8): 1192–1199

O’Carroll D, Erhardt S, Pagani M, Barton S C, Surani M A, Jenuwein T (2001). The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol, 21(13): 4330–4336

Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, Hanauer A, Boue J, Bertheas M, Mandel J (1991). Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science, 252: 1097–1102

Ostroff L E, Fiala J C, Allwardt B, Harris K M (2002). Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices. Neuron, 35(3): 535–545

Papazian D M, Schwarz T L, Tempel B L, Jan Y N, Jan L Y (1987). Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science, 237(4816): 749–753

Parrish J Z, Emoto K, Jan L Y, Jan Y N (2007a). Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites. Genes Dev, 21(8): 956–972

Parrish J Z, Emoto K, Kim M D, Jan Y N (2007b). Mechanisms that regulate establishment, maintenance, and remodeling of dendritic fields. Annu Rev Neurosci, 30: 399–423

Penagarikano O, Mulle J G, Warren S T (2007). The pathophysiology of fragile x syndrome. Annu Rev Genomics Hum Genet, 8: 109–129

Persico A M, Bourgeron T (2006). Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci, 29(7): 349–358

Phiel C J, Zhang F, Huang E Y, Guenther M G, Lazar M A, Klein P S (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem, 276(39): 36734–36741

Pittenger C, Duman R S (2008). Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology, 33(1): 88–109

Potocki L, Bi W, Treadwell-Deering D, Carvalho C M, Eifert A, Friedman E M, Glaze D, Krull K, Lee J A, Lewis R A, Mendoza-Londono R, Robbins-Furman P, Shaw C, Shi X, Weissenberger G, Withers M, Yatsenko S A, Zackai E H, Stankiewicz P, Lupski J R (2007). Characterization of Potocki-Lupski syndrome (dup(17) (p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet, 80(4): 633–649

Poy M N, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald P E, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014): 226–230

Purpura D P (1974). Dendritic spine “dysgenesis” and mental retardation. Science, 186(4169): 1126–112

Purpura D P (1975). Dendritic differentiation in human cerebral cortex: normal and aberrant developmental patterns. Adv Neurol, 12: 91–134

Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil S V, Russo J J, Sander C, Tuschl T, Kandel E (2009). Characterization of small RNAs in aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron, 63(6): 803–817

Ramocki M B, Zoghbi H Y (2008). Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature, 455(7215): 912–918

Redmond L, Kashani A H, Ghosh A (2002). Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron, 34(6): 999–1010

Reiter L T, Potocki L, Chien S, Gribskov M, Bier E (2001). A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res, 11(6): 1114–1125

Riggs A D (1975). X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet, 14(1): 9–25

Robertson K D, Ait-Si-Ali S, Yokochi T, Wade P A, Jones P L, Wolffe A P (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet, 25(3): 338–342

Robinson T E, Kolb B (2004). Structural plasticity associated with exposure to drugs of abuse. Neuropharmacology, 47(Suppl 1): 33–46

Rosenthal N, Brown S (2007). The mouse ascending: perspectives for human-disease models. Nat Cell Biol, 9(9): 993–999

Rybak A, Fuchs H, Smirnova L, Brandt C, Pohl E E, Nitsch R, Wulczyn F G (2008). A feedback loop comprising lin-28 and let-7 controls prelet-7 maturation during neural stem-cell commitment. Nat Cell Biol, 10(8): 987–993

Sahoo T, del Gaudio D, German J R, Shinawi M, Peters S U, Person R E, Garnica A, Cheung S W, Beaudet A L (2008). Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet, 40(6): 719–721

Santos-Rosa H, Schneider R, Bannister A J, Sherriff J, Bernstein B E, Emre N C, Schreiber S L, Mellor J, Kouzarides T (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419(6905): 407–411

Sarna J R, Larouche M, Marzban H, Sillitoe R V, Rancourt D E, Hawkes R (2003). Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J Comp Neurol, 456(3): 279–291

Schratt G (2009). microRNAs at the synapse. Nat Rev Neurosci, 10(12): 842–849

Schratt G M, Tuebing F, Nigh E A, Kane C G, Sabatini M E, Kiebler M, Greenberg M E (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439(7074): 283–289

Schübeler D, MacAlpine D M, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling D E, O’Neill L P, Turner BM, Delrow J, Bell S P, Groudine M (2004). The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev, 18(11): 1263–1271

Schwamborn J C, Berezikov E, Knoblich J A (2009). The TRIM-NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell, 136(5): 913–925

Segal M (2005). Dendritic spines and long-term plasticity. Nat Rev Neurosci, 6(4): 277–284

Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002). Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron, 35(2): 243–254

Shahbazian M D, Zoghbi H Y (2002). Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am J Hum Genet, 71(6): 1259–1272

Shi Y, Chichung Lie D, Taupin P, Nakashima K, Ray J, Yu R T, Gage F H, Evans R M (2004). Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature, 427(6969): 78–83

Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M, Khudayberdiev S, Leuschner P F, Busch C J, Kane C, Hübel K, Dekker F, Hedberg C, Rengarajan B, Drepper C, Waldmann H, Kauppinen S, Greenberg M E, Draguhn A, Rehmsmeier M, Martinez J, Schratt G M (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol, 11(6): 705–716

Slager R E, Newton T L, Vlangos C N, Finucane B, Elsea S H (2003). Mutations in RAI1 associated with Smith-Magenis syndrome. Nat Genet, 33(4): 466–468

Slegtenhorst-Eegdeman K E, de Rooij D G, Verhoef-Post M, van de Kant H J, Bakker C E, Oostra B A, Grootegoed J A, Themmen A P (1998). Macroorchidism in FMR1 knockout mice is caused by increased Sertoli cell proliferation during testicular development. Endocrinology, 139(1): 156–162

Smrt R D, Eaves-Egenes J, Barkho B Z, Santistevan N J, Zhao C, Aimone J B, Gage F H, Zhao X (2007). Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis, 27(1): 77–89

Smrt R D, Szulwach K E, Pfeiffer R L, Li X, Guo W, Pathania M, Teng Z Q, Luo Y, Peng J, Bordey A, Jin P, Zhao X (2010). MicroRNA miR-137 regulates neuronal maturation by targeting ubiquitin ligase mind bomb-1. Stem Cells, 28(6): 1060–1070

Snow W M, Hartle K, Ivanco T L (2008). Altered morphology of motor cortex neurons in the VPA rat model of autism. Dev Psychobiol, 50(7): 633–639

Song H, Kempermann G, Overstreet Wadiche L, Zhao C, Schinder A F, Bischofberger J (2005). New neurons in the adult mammalian brain: synaptogenesis and functional integration. J Neurosci, 25(45): 10366–10368

Spires T L, Grote H E, Garry S, Cordery P M, Van Dellen A, Blakemore C, Hannan A J (2004). Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci, 19(10): 2799–2807

Stark K L, Xu B, Bagchi A, Lai W S, Liu H, Hsu R, Wan X, Pavlidis P, Mills A A, Karayiorgou M, Gogos J A (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat Genet, 40(6): 751–760

Suetsugu M, Mehraein P (1980). Spine distribution along the apical dendrites of the pyramidal neurons in Down’s syndrome. A quantitative Golgi study. Acta Neuropathol, 50(3): 207–210

Sutton M A, Schuman E M (2005). Local translational control in dendrites and its role in long-term synaptic plasticity. J Neurobiol, 64(1): 116–131

Suzuki T, Tian Q B, Kuromitsu J, Kawai T, Endo S (2007). Characterization of mRNA species that are associated with postsynaptic density fraction by gene chip microarray analysis. Neurosci Res, 57(1): 61–85

Szulwach K E, Li X, Smrt R D, Li Y, Luo Y, Lin L, Santistevan N J, Li W, Zhao X, Jin P (2010). Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol, 189(1): 127–141

Takai D, Jones P A (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A, 99(6): 3740–3745

Takashima S, Becker L E, Armstrong D L, Chan F (1981). Abnormal neuronal development in the visual cortex of the human fetus and infant with down’s syndrome. A quantitative and qualitative Golgi study. Brain Res, 225(1): 1–21

Takashima S, Iida K, Mito T, Arima M (1994). Dendritic and histochemical development and ageing in patients with Down’s syndrome. J Intellect Disabil Res, 38(Pt 3): 265–273

Toni N, Laplagne D A, Zhao C, Lombardi G, Ribak C E, Gage F H, Schinder A F (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci, 11(8): 901–907

Tudor M, Akbarian S, Chen R Z, Jaenisch R (2002). Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci U S A, 99(24): 15536–15541

Van de Bor V, Davis I (2004). mRNA localisation gets more complex. Curr Opin Cell Biol, 16(3): 300–307

van Praag H, Schinder A F, Christie B R, Toni N, Palmer T D, Gage F H (2002). Functional neurogenesis in the adult hippocampus. Nature, 415(6875): 1030–1034

Vanderklish P W, Edelman G M (2005). Differential translation and fragile X syndrome. Genes Brain Behav, 4(6): 360–384

Walkley S U, Baker H J (1984). Sphingomyelin lipidosis in a cat: Golgi studies. Acta Neuropathol, 65(2): 138–144

Wan L, Dockendorff T C, Jongens T A, Dreyfuss G (2000). Characterization of dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation protein. Mol Cell Biol, 20(22): 8536–8547

Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007). DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet, 39(3): 380–385

Wayman G A, Davare M, Ando H, Fortin D, Varlamova O, Cheng H Y, Marks D, Obrietan K, Soderling T R, Goodman R H, Impey S (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A, 105(26): 9093–9098

Wayman G A, Impey S, Marks D, Saneyoshi T, Grant W F, Derkach V, Soderling T R (2006). Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron, 50(6): 897–909

Wisniewski K E, Segan S M, Miezejeski C M, Sersen E A, Rudelli R D (1991). The Fra(X) syndrome: neurological, electrophysiological, and neuropathological abnormalities. Am J Med Genet, 38(2–3): 476–480

Xu X L, Li Y, Wang F, Gao F B (2008). The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. J Neurosci, 28(46): 11883–11889

Yamauchi J, Miyamoto Y, Kusakawa S, Torii T, Mizutani R, Sanbe A, Nakajima H, Kiyokawa N, Tanoue A (2008). Neurofibromatosis 2 tumor suppressor, the gene induced by valproic acid, mediates neurite outgrowth through interaction with paxillin. Exp Cell Res, 314(11–12): 2279–2288

Yamauchi J, Miyamoto Y, Torii T, Mizutani R, Nakamura K, Sanbe A, Koide H, Kusakawa S, Tanoue A (2009). Valproic acid-inducible Arl4D and cytohesin-2/ARNO, acting through the downstream Arf6, regulate neurite outgrowth in N1E-115 cells. Exp Cell Res, 315(12): 2043–2052

Yang L, Duan R, Chen D, Wang J, Chen D, Jin P (2007). Fragile X mental retardation protein modulates the fate of germline stem cells in Drosophila. Hum Mol Genet, 16(15): 1814–1820

Yoder J A, Walsh C P, Bestor T H (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends Genet, 13(8): 335–340

Yoo A S, Staahl B T, Chen L, Crabtree G R (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature, 460(7255): 642–646

Zhang Y Q, Bailey A M, Matthies H J, Renden R B, Smith M A, Speese S D, Rubin G M, Broadie K (2001). Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell, 107(5): 591–603

Zhao C, Avilés C, Abel R A, Almli C R, McQuillen P, Pleasure S J (2005). Hippocampal and visuospatial learning defects in mice with a deletion of frizzled 9, a gene in the Williams syndrome deletion interval. Development, 132(12): 2917–2927

Zhao C, Sun G, Li S, Lang MF, Yang S, Li W, Shi Y (2010). MicroRNA let-7b regulates neural stem cell proliferation and differentiation by targeting nuclear receptor TLX signaling. Proc Natl Acad Sci U S A, 107(5): 1876–1881

Zhao C, Sun G, Li S, Shi Y (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol, 16(4): 365–371

Zhao C, Teng E M, Summers R G Jr, Ming G L, Gage F H (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci, 26(1): 3–11

Zhou Z, Hong E J, Cohen S, Zhao WN, Ho H Y, Schmidt L, Chen WG, Lin Y, Savner E, Griffith E C, Hu L, Steen J A, Weitz C J, Greenberg M E (2006). Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron, 52(2): 255–269

Zoghbi H Y (2003). Postnatal neurodevelopmental disorders: meeting at the synapse? Science, 302(5646): 826–830