Các biến đổi epigenetic trong bệnh viêm khớp dạng thấp

Arthritis Research & Therapy - Tập 10 - Trang 1-9 - 2008
Simon Strietholt1, Britta Maurer2, Marvin A Peters1, Thomas Pap1, Steffen Gay2
1Institute of Experimental Musculoskeletal Medicine, University Hospital Munster, Münster, Germany
2Center of Experimental Rheumatology, University Hospital of Zurich/Zurich Center of Integrative Human Physiology, Zurich, Switzerland

Tóm tắt

Trong vài thập kỷ qua, các yếu tố di truyền liên quan đến các bệnh viêm khớp như các haplotype HLA đã được nghiên cứu một cách rộng rãi. Tuy nhiên, trong những năm nghiên cứu vừa qua, ngày càng rõ ràng rằng ảnh hưởng của các quá trình epigenetic trong sự phát triển của các bệnh thấp khớp có thể mạnh mẽ không kém gì nền tảng di truyền của một bệnh nhân. Các quá trình epigenetic là những thay đổi di truyền trong việc biểu hiện gen mà không làm thay đổi trình tự nucleotide. Những sửa đổi này bao gồm metyl hóa chromatin và sửa đổi sau dịch mã của các histone hoặc các protein liên kết chromatin khác. Các sửa đổi này bao gồm việc thêm các nhóm metyl, acetyl và phosphoryl hoặc thậm chí là các phần tử lớn hơn như việc gắn kết ubiquitin hoặc các yếu tố giống ubiquitin nhỏ. Tính kết hợp của các quá trình này tạo thành một mạng lưới phức tạp của các biến đổi epigenetic điều chỉnh việc biểu hiện gen thông qua việc kích hoạt hoặc làm tắt các gen. Bài tổng quan này cung cấp cái nhìn về vai trò của các biến đổi epigenetic trong sinh bệnh học của bệnh viêm khớp dạng thấp và chỉ ra cách mà việc hiểu biết tốt hơn về các cơ chế này có thể dẫn đến các chiến lược điều trị mới.

Từ khóa

#biến đổi epigenetic #bệnh viêm khớp dạng thấp #HLA haplotypes #metyl hóa chromatin #sửa đổi histone

Tài liệu tham khảo

Muller-Ladner U, Pap T, Gay RE, Neidhart M, Gay S: Mechanisms of disease: the molecular and cellular basis of joint destruction in rheumatoid arthritis. Nat Clin Pract Rheumatol. 2005, 1: 102-110. Deighton C, Criswell LA: Recent advances in the genetics of rheumatoid arthritis. Curr Rheumatol Rep. 2006, 8: 394-400. Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993, 75: 843-854. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000, 403: 901-906. Berezikov E, Plasterk RH: Camels and zebrafish, viruses and cancer: a microRNA update. Hum Mol Genet. 2005, 14 (Spec No. 2): R183-190. Sedivy JM, Banumathy G, Adams PD: Aging by epigenetics – a consequence of chromatin damage?. Exp Cell Res. 2008, 314: 1909-1917. Yung RL, Julius A: Epigenetics, aging, and autoimmunity. Autoimmunity. 2008, 41: 329-335. Liao X, Siu MK, Chan KY, Wong ES, Ngan HY, Chan QK, Li AS, Khoo US, Cheung AN: Hypermethylation of RAS effector related genes and DNA methyltransferase 1 expression in endometrial carcinogenesis. Int J Cancer. 2008, 123: 296-302. Kaminsky Z, Petronis A, Wang SC, Levine B, Ghaffar O, Floden D, Feinstein A: Epigenetics of personality traits: an illustrative study of identical twins discordant for risk-taking behavior. Twin Res Hum Genet. 2008, 11: 1-11. Holliday R: Epigenetics: a historical overview. Epigenetics. 2006, 1: 76-80. Cheng CS, Johnson TL, Hoffmann A: Epigenetic control: slow and global, nimble and local. Genes Dev. 2008, 22: 1110-1114. Grewal SI, Elgin SC: Transcription and RNA interference in the formation of heterochromatin. Nature. 2007, 447: 399-406. Grewal SI, Jia S: Heterochromatin revisited. Nat Rev Genet. 2007, 8: 35-46. Briggs SD, Xiao T, Sun ZW, Caldwell JA, Shabanowitz J, Hunt DF, Allis CD, Strahl BD: Gene silencing: trans-histone regulatory pathway in chromatin. Nature. 2002, 418: 498- de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB: Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003, 370 (Pt 3): 737-749. Kim TY, Bang YJ, Robertson KD: Histone deacetylase inhibitors for cancer therapy. Epigenetics. 2006, 1: 14-23. Gray SG, Dangond F: Rationale for the use of histone deacetylase inhibitors as a dual therapeutic modality in multiple sclerosis. Epigenetics. 2006, 1: 67-75. Mishra N, Reilly CM, Brown DR, Ruiz P, Gilkeson GS: Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J Clin Invest. 2003, 111: 539-552. Hemmatazad H, Maciejewska H, Pileckyte M, Maurer B, Distler J, Gay RE, Michel B, Gay S, Huber LC, Distler O, Juengel A: HDAC7 – a new target for the treatment of systemic sclerosis [abstract 1423]. EULAR. 2008, 594- Huber LC, Distler JH, Moritz F, Hemmatazad H, Hauser T, Michel BA, Gay RE, Matucci-Cerinic M, Gay S, Distler O, Jüngel A: Tri-chostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum. 2007, 56: 2755-2764. Nasu Y, Nishida K, Miyazawa S, Komiyama T, Kadota Y, Abe N, Yoshida A, Hirohata S, Ohtsuka A, Ozaki T: Trichostatin A, a histone deacetylase inhibitor, suppresses synovial inflammation and subsequent cartilage destruction in a collagen antibody-induced arthritis mouse model. Osteoarthritis Cartilage. 2008, 16: 723-732. Nakamura C, Matsushita I, Kosaka E, Kondo T, Kimura T: Anti-arthritic effects of combined treatment with histone deacetylase inhibitor and low-intensity ultrasound in the presence of microbubbles in human rheumatoid synovial cells. Rheumatology (Oxford). 2008, 47: 418-424. Huber LC, Brock M, Hemmatazad H, Giger OT, Moritz F, Trenkmann M, Distler JH, Gay RE, Kolling C, Moch H, Michel BA, Gay S, Distler O, Jüngel A: Histone deacetylase/acetylase activity in total synovial tissue derived from rheumatoid arthritis and osteoarthritis patients. Arthritis Rheum. 2007, 56: 1087-1093. Heo K, Kim B, Kim K, Choi J, Kim H, Zhan Y, Ranish JA, An W: Isolation and characterization of proteins associated with histone H3 tails in vivo. J Biol Chem. 2007, 282: 15476-15483. Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Günther T, Buettner R, Metzger E, Schüle R: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol. 2007, 9: 347-353. Suzuki MM, Bird A: DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008, 9: 465-476. Klose RJ, Bird AP: Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006, 31: 89-97. Fassbender HG, Seibel M, Hebert T: Pathways of destruction in metacarpal and metatarsal joints of patients with rheumatoid arthritis. Scand J Rheumatol. 1992, 21: 10-16. Takami N, Osawa K, Miura Y, Komai K, Taniguchi M, Shiraishi M, Sato K, Iguchi T, Shiozawa K, Hashiramoto A, Shiozawa S: Hypermethylated promoter region of DR3, the death receptor 3 gene, in rheumatoid arthritis synovial cells. Arthritis Rheum. 2006, 54: 779-787. Jungel A, Baresova V, Ospelt C, Simmen BR, Michel BA, Gay RE, Gay S, Seemayer CA, Neidhart M: Trichostatin A sensitises rheumatoid arthritis synovial fibroblasts for TRAIL-induced apoptosis. Ann Rheum Dis. 2006, 65: 910-912. Neidhart M, Rethage J, Kuchen S, Künzler P, Crowl RM, Billingham ME, Gay RE, Gay S: Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum. 2000, 43: 2634-2647. Kuchen S, Seemayer CA, Rethage J, von Knoch R, Kuenzler P, Beat AM, Gay RE, Gay S, Neidhart M: The L1 retroelement-related p40 protein induces p38delta MAP kinase. Autoimmunity. 2004, 37: 57-65. Karouzakis E, Ospelt C, Schumann GG, Kolling C, Michel BA, Gay RE, Gay S, Neidhart M: Genomic hypomethylation of rheumatoid arthritis fibroblasts [abstract 745]. ACR. 2007, 315-316. Wang Y, Fan PS, Kahaleh B: Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 2006, 54: 2271-2279. Deplus R, Brenner C, Burgers WA, Putmans P, Kouzarides T, de Launoit Y, Fuks F: Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res. 2002, 30: 3831-3838. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB: Prediction of mammalian microRNA targets. Cell. 2003, 115: 787-798. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. Merkenschlager M, Wilson CB: RNAi and chromatin in T cell development and function. Curr Opin Immunol. 2008, 20: 131-138. Vasudevan S, Tong Y, Steitz JA: Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007, 318: 1931-1934. Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W: Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell. 2006, 125: 1111-1124. Ruby JG, Jan CH, Bartel DP: Intronic microRNA precursors that bypass Drosha processing. Nature. 2007, 448: 83-86. Berezikov E, Chung W, Willis J, Cuppen E, Lai EC: Mammalian mirtron genes. Mol Cell. 2007, 28: 328-336. Song L, Tuan RS: MicroRNAs and cell differentiation in mammalian development. Birth Defects Res C Embryo Today. 2006, 78: 140-149. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S: Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007, 101: 59-68. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Høydal M, Autore C, Russo MA, Dorn GW, Ellingsen O, Ruiz-Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G: MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007, 13: 613-618. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A: Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol. 2006, 174: 677-687. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ, Srivastava D: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007, 129: 303-317. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, Watts L, Booten SL, Graham M, McKay R, Subramaniam A, Propp S, Lollo BA, Freier S, Bennett CF, Bhanot S, Monia BP: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006, 3: 87-98. Krutzfeldt J, Stoffel M: MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metabolism. 2006, 4: 9-12. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M: A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004, 432: 226-230. Dykxhoorn DM, Chowdhury D, Lieberman J: RNA interference and cancer: endogenous pathways and therapeutic approaches. Adv Exp Med Biol. 2008, 615: 299-329. Thai TH, Calado DP, Casola S, Ansel KM, Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, Schmidt-Supprian M, Rajewsky N, Yancopoulos G, Rao A, Rajewsky K: Regulation of the germinal center response by microRNA-155. Science. 2007, 316: 604-608. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska EA, Vetrie D, Okkenhaug K, Enright AJ, Dougan G, Turner M, Bradley A: Requirement of bic/microRNA-155 for normal immune function. Science. 2007, 316: 608-611. Li QJ, Chau J, Ebert PJ, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen CZ: miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell. 2007, 129: 147-161. Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M: A role for dicer in immune regulation. J Exp Med. 2006, 203: 2519-2527. Stanczyk J, Pedrioli DM, Brentano F, Sanchez-Pernaute O, Kolling C, Gay RE, Detmar M, Gay S, Kyburz D: Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008, 58: 1001-1009. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, Asahara H: Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008, 58: 1284-1292. Ma L, Teruya-Feldstein J, Weinberg RA: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007, 449: 682-688. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T: Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA. 2008, 105: 3903-3908. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005, 102: 13944-13949. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM: MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA. 2007, 104: 15805-15810. Weber B, Stresemann C, Brueckner B, Lyko F: Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle. 2007, 6: 1001-1005. Saito Y, Jones PA: Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle. 2006, 5: 2220-2222. Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjärn M, Hansen JB, Hansen HF, Straarup EM, McCullagh K, Kearney P, Kauppinen S: Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008, 36: 1153-1162. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjärn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, Kauppinen S: LNA-mediated microRNA silencing in non-human primates. Nature. 2008, 452: 896-899. Yi R, Poy MN, Stoffel M, Fuchs E: A skin microRNA promotes differentiation by repressing 'stemness'. Nature. 2008, 452: 225-229. First miRNA drug enters human studies. [http://www.fiercebiotech.com/story/first-mirna-drug-enters-human-studies/2008-05-28] Osokine I, Hsu R, Loeb GB, McManus MT: Unintentional miRNA ablation is a risk factor in gene knockout studies: a short report. PLoS Genet. 2008, 4: e34- Osley MA, Fleming AB, Kao CF: Histone ubiquitylation and the regulation of transcription. Results Probl Cell Differ. 2006, 41: 47-75. Chen ZJ: Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol. 2005, 7: 758-765. Stielow B, Sapetschnig A, Kruger I, Kunert N, Brehm A, Boutros M, Suske G: Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Mol Cell. 2008, 29: 742-754. Yang SH, Sharrocks AD: SUMO promotes HDAC-mediated transcriptional repression. Mol Cell. 2004, 13: 611-617. Ling Y, Sankpal UT, Robertson AK, McNally JG, Karpova T, Robertson KD: Modification of de novo DNA methyltransferase 3a (Dnmt3a) by SUMO-1 modulates its interaction with histone deacetylases (HDACs) and its capacity to repress transcription. Nucleic Acids Res. 2004, 32: 598-610. Liu B, Shuai K: Regulation of the sumoylation system in gene expression. Curr Opin Cell Biol. 2008, 20: 288-293. Meinecke I, Cinski A, Baier A, Peters MA, Dankbar B, Wille A, Drynda A, Mendoza H, Gay RE, Hay RT, Ink B, Gay S, Pap T: Modification of nuclear PML protein by SUMO-1 regulates Fas-induced apoptosis in rheumatoid arthritis synovial fibroblasts. Proc Natl Acad Sci USA. 2007, 104: 5073-5078. Maciejewska H, Hemmatazad H, Gay RE, Michel B, Neidhart M, Kolling C, Gay S, Pap T, Jüngel A: Desumoylation decreases levels of histone acetylation in rheumatoid arthritis synovial fibroblasts [abstract 375]. ACR. 2007, 193- Roman-Blas JA, Jimenez SA: NF-kappaB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis Cartilage. 2006, 14: 839-848. Berghe Vanden W, Ndlovu MN, Hoya-Arias R, Dijsselbloem N, Gerlo S, Haegeman G: Keeping up NF-kappaB appearances: epigenetic control of immunity or inflammation-triggered epigenetics. Biochem Pharmacol. 2006, 72: 1114-1131. Saccani S, Natoli G: Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev. 2002, 16: 2219-2224. Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA, Munroe DJ, Farrar WL: Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res. 2005, 65: 4673-4682. Wehbe H, Henson R, Meng F, Mize-Berge J, Patel T: Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression. Cancer Res. 2006, 66: 10517-10524. Meng F, Henson R, Wehbe-Janek H, Smith H, Ueno Y, Patel T: The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem. 2007, 282: 8256-8264. Löffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermüller J, Kretzschmar AK, Burger R, Gramatzki M, Blumert C, Bauer K, Cvijic H, Ullmann AK, Stadler PF, Horn F: Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007, 110: 1330-1333. Meng F, Wehbe-Janek H, Henson R, Smith H, Patel T: Epigenetic regulation of microRNA-370 by interleukin-6 in malignant human cholangiocytes. Oncogene. 2008, 27: 378-386.