Enzyme-assisted self-assembly under thermodynamic control

Nature Nanotechnology - Tập 4 Số 1 - Trang 19-24 - 2009
Richard J. Williams1,2, Andrew M. Smith1,2, Richard F. Collins1, Nigel W. Hodson3, Apurba K. Das1,4,2, Rein V. Ulijn1,4,2
1Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester, UK
2School of Materials, The University of Manchester, Manchester, UK
3Faculty of Life Sciences, The University of Manchester, Manchester, UK
4Present address: Department of Pure and Applied Chemistry/WestCHEM, The University of Strathclyde, Glasgow G1 1XL, UK,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Whitesides, G. M. & Boncheva, M. Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proc. Natl Acad. Sci. USA 99, 4769–4774 (2002).

Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, 1995).

Jonkheijm, P., van der Schoot, P., Schenning, A. P. H. J. & Meijer, E. W. Probing the solvent-assisted nucleation pathway in chemical self-assembly. Science 313, 80–83 (2006).

Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

Zhang, S. G., Holmes, T., Lockshin, C. & Rich, A. Spontaneous assembly of a self complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl Acad. Sci. USA 90, 3334–3338 (1993).

Reches, M. & Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

Kiyonaka, S. et al. Semi-wet peptide/protein array using supramolecular hydrogel. Nature Mater. 3, 58–64 (2004).

Schenning, A. P. H. J. & Meijer, E. W. Supramolecular electronics; nanowires from self-assembled π-conjugated systems. Chem. Commun. 26, 3245–3258 (2005).

Yang, Z. M. et al. Enzymatic formation of supramolecular hydrogels. Adv. Mater. 16, 1440–1444 (2004).

Smith, A. M. et al. Fmoc-Diphenylalanine self assembles to a hydrogel via a novel architecture based on π–π interlocked β-sheets. Adv. Mater. 20, 37–41 (2008).

Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

Sreenivasachary, N. & Lehn, J. M. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc. Natl Acad. Sci. USA 102, 5938–5943 (2005).

Winkler, S., Wilson, D. & Kaplan, D. L. Controlling β-sheet assembly in genetically engineered silk by enzymatic phosphorylation/dephosphorylation. Biochemistry 39, 12739–12746 (2000).

Yang, Z., Liang, G., Ma, M., Gao, Y. & Xu, B. In vitro and in vivo enzymatic formation of supramolecular hydrogels based on self-assembled nanofibers of a β-amino acid derivative. Small 3, 558–562 (2007).

Dos Santos, S. et al. Switch-peptides: Controlling self-assembly of amyloid β-derived peptides in vitro by consecutive triggering of acyl migrations. J. Am. Chem. Soc. 127, 11888–11889 (2005).

Hu, B.-H. & Messersmith P. B. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. J. Am. Chem. Soc. 125, 14298–14299 (2003).

Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nature Mater. 5, 797–801 (2006).

Carpenter, F. H. The free energy change in hydrolytic reactions. The non-ionized compound convention. J. Am. Chem. Soc. 82, 1111–1122 (1960).

Toledano, S., Williams, R. J., Jayawarna, V. & Ulijn, R. V. Enzyme-triggered self-assembly of peptide hydrogels via reversed hydrolysis. J. Am. Chem. Soc. 128, 1070–1071 (2006).

Oh, K., Jeong, K.-S. & Moore, J. S. Folding-driven synthesis of oligomers. Nature 414, 889–893 (2001).

Bilgicer, B., Xing, X. & Kumar, K. Programmed self-sorting of coiled coils with leucine and hexafluoroleucine cores. J. Am. Chem. Soc. 123, 11815–11816 (2001).

Krishnan-Ghosh, Y. & Balasubramanian, S. Dynamic covalent chemistry on self-templating peptides: Formation of a disulfide-linked β-hairpin mimic. Angew. Chem. Int. Ed. 42, 2171–2173 (2003).

Case, M. A. & McLendon, G. L. A virtual library approach to investigate protein folding and internal packing. J. Am. Chem. Soc. 122, 8089–8090 (2000).

Swann, P. G. et al. Nonspecific protease-catalyzed hydrolysis synthesis of a mixture of peptides: Product diversity and ligand amplification by a molecular trap. Biopolymers 40, 617–625 (1996).

Forster, T. Excimers. Angew. Chem. Int. Ed. 8, 333–343 (1969).

Pinion, J. P., Minn, F. L. & Filipescu, N. Excimer emission from dibenzofuran and substituted fluorenes. J. Lumin. 3, 245–252 (1971).

Aggelli, A. et al. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes. Nature 386, 259–262 (1997).

Lins, R. J., Flitsch, S. L., Turner, N. J., Irving, E. & Brown, S. A. Enzymatic generation and in situ screening of a dynamic combinatorial library of sialic acid analogues. Angew. Chem. Int. Ed. 41, 3405–3407 (2002).

Mann, S. Life as a nanoscale phenomenon. Angew. Chem. Int. Ed. 47, 5306–5320 (2008).