Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils

Systematic and Applied Microbiology - Tập 37 Số 1 - Trang 60-67 - 2014
Hannah L. Woo1,2,3, Terry C. Hazen4,1,5,6,7,2, Blake A. Simmons8,2, Kristen M. DeAngelis7,2,9
1Department of Civil & Environmental Engineering, The University of Tennessee, United States
2Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, United States
3Physical Biosciences Division, Lawrence Berkeley National Laboratory, United States
4Biosciences Division, Oak Ridge National Laboratory, United States
5Department of Earth & Planetary Sciences, The University of Tennessee, United States
6Department of Microbiology, The University of Tennessee, United States
7Earth Sciences Division, Ecology Department, Lawrence Berkeley National Laboratory, United States
8Biomass Science and Conversion Technology Department, Sandia National Laboratories, United States
9Microbiology Department, University of Massachusetts Amherst, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Goyal, 1991, Characteristics of fungal cellulases, Bioresour. Technol., 36, 37, 10.1016/0960-8524(91)90098-5

Gilkes, 1991, Bioresour. Technol., 36, 21, 10.1016/0960-8524(91)90097-4

Bhat, 2000, Related enzymes in biotechnology, Biotechnol. Adv., 18, 355, 10.1016/S0734-9750(00)00041-0

Coughlan, 1992, Enzymatic hydrolysis of cellulose: an overview, Bioresour. Technol., 39, 107, 10.1016/0960-8524(92)90128-K

Sun, 2003, Hydrolysis of lignocellulosic materials for ethanol production: a review, ChemInform, 34, 1, 10.1002/chin.200301272

Maki, 2009, The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass, Int. J. Biol. Sci., 5, 500, 10.7150/ijbs.5.500

Lynd, 2002, Microbial cellulose utilization: fundamentals and biotechnology, Microbiol. Mol. Biol. Rev., 66, 506, 10.1128/MMBR.66.3.506-577.2002

Pérez, 2002, Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview, Int. Microbiol., 5, 53, 10.1007/s10123-002-0062-3

Dantas, 2008, Bacteria subsisting on antibiotics, Science, 320, 100, 10.1126/science.1155157

DeAngelis, 2013, Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1, Front. Microbiol., 4, 1, 10.3389/fmicb.2013.00280

DeLong, 2009, The microbial ocean from genomes to biomes, Nature, 459, 200, 10.1038/nature08059

Giovannoni, 2007, The importance of culturing bacterioplankton in the ‘omics’ age, Nat. Rev. Microbiol., 5, 820, 10.1038/nrmicro1752

Lorenz, 2002, Metagenome – a challenging source of enzyme discovery, J. Mol. Catal. B: Enzym., 19–20, 13, 10.1016/S1381-1177(02)00147-9

Janssen, 2002, Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia, Appl. Environ. Microbiol., 68, 2391, 10.1128/AEM.68.5.2391-2396.2002

Sait, 2002, Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys, Environ. Microbiol., 4, 654, 10.1046/j.1462-2920.2002.00352.x

Breznak, 1994, Role of microorganisms in the digestion of lignocellulose by termites, Annu. Rev. Entomol., 39, 453, 10.1146/annurev.en.39.010194.002321

DeAngelis, 2010, Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulolytic microbial communities, BioEnergy Res., 3, 146, 10.1007/s12155-010-9089-z

Lu, 2005, Isolation and characterization of mesophilic cellulose-degrading bacteria from flower stalks-vegetable waste co-composting system, J. Gen. Appl. Microbiol., 51, 353, 10.2323/jgam.51.353

Tuomela, 2000, Biodegradation of lignin in a compost environment: a review, Bioresour. Technol., 72, 169, 10.1016/S0960-8524(99)00104-2

Kato, 1998, Degradation of lignin compounds by bacteria from termite guts, Biotechnol. Lett., 20, 459, 10.1023/A:1005432027603

Pasti, 1990, Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut, Appl. Environ. Microbiol., 56, 2213, 10.1128/AEM.56.7.2213-2218.1990

Parton, 2007, Global-scale similarities in nitrogen release patterns during long-term decomposition, Science, 315, 361, 10.1126/science.1134853

Tanner, 2007, Cultivation of Bacteria and Fungi, 69

Teather, 1982, Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen, Appl. Environ. Microbiol., 43, 777, 10.1128/AEM.43.4.777-780.1982

Lane, 1991, 16S/23S rRNA sequencing, 115

DeSantis, 2006, NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes, Nucleic Acids Res., 34, W394, 10.1093/nar/gkl244

Huber, 2004, Bellerophon: a program to detect chimeric sequences in multiple sequence alignments, Bioinformatics, 20, 2317, 10.1093/bioinformatics/bth226

DeSantis, 2006, Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB, Appl. Environ. Microbiol., 72, 5069, 10.1128/AEM.03006-05

Kim, 2012, Introducing, EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species, Int. J. Syst. Evol. Microbiol., 62, 716, 10.1099/ijs.0.038075-0

Markowitz, 2012, IMG: the integrated microbial genomes database and comparative analysis system, Nucleic Acids Res., 40, D115, 10.1093/nar/gkr1044

Dixon, 2003, VEGAN, a package of R functions for community ecology, J. Veg. Sci., 14, 927, 10.1111/j.1654-1103.2003.tb02228.x

Team, 2008, A language and environment for statistical computing

Ludwig, 2004, ARB: a software environment for sequence data, Nucleic Acids Res., 32, 1363, 10.1093/nar/gkh293

Peng, 2002, Logistic regression analysis and reporting: a primer, Underst. Stat., 1, 31, 10.1207/S15328031US0101_04

Oblinger, 1975, Understanding and teaching most probable number technique, J. Milk Food Technol., 38, 540, 10.4315/0022-2747-38.9.540

Gest, 2001, Letter to the editor. Taxonomic ambiguities: a case history, Int. J. Syst. Evol. Microbiol., 51, 707, 10.1099/00207713-51-2-707

Ciccarelli, 2006, Toward automatic reconstruction of a highly resolved tree of life, Science, 311, 1283, 10.1126/science.1123061

Marx, 2001, A microplate fluorimetric assay for the study of enzyme diversity in soils, Soil Biol. Biochem., 33, 1633, 10.1016/S0038-0717(01)00079-7

Hendel, 2005, Lignin-degrading enzymes: phenoloxidase peroxidase, 273

Fawcett, 2006, An introduction to ROC analysis, Pattern Recognit. Lett., 27, 861, 10.1016/j.patrec.2005.10.010

Moore, 2010

Kruskal, 1952, Use of ranks in one-criterion variance analysis, J. Am. Stat. Assoc., 47, 583, 10.1080/01621459.1952.10483441

Vargha, 1998, The Kruskal–Wallis test and stochastic homogeneity, J. Educ. Behav. Stat., 23, 170, 10.3102/10769986023002170

DeAngelis, 2013, Metagenomes of tropical soil-derived anaerobic switchgrass-adapted consortia with and without iron, Standards in Genomic Sciences, 7, 382, 10.4056/sigs.3377516

DeAngelis, 2011, Characterization of trapped lignin-degrading microbes in tropical forest soil, PLoS ONE, 6, e19306, 10.1371/journal.pone.0019306

Masai, 1999, Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6, J. Bacteriol., 181, 55, 10.1128/JB.181.1.55-62.1999

Ramachandra, 1988, Characterization of an extracellular lignin peroxidase of the lignocellulolytic actinomycete Streptomyces viridosporus, Appl. Environ. Microbiol., 54, 3057, 10.1128/AEM.54.12.3057-3063.1988

Ahmad, 2010, Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders, Mol. BioSyst., 6, 815, 10.1039/b908966g

Bruce, 2010, Bacterial community diversity in the Brazilian Atlantic forest soils, Microb. Ecol., 60, 840, 10.1007/s00248-010-9750-2

Jyoti, 2010, Gulbenkiania indica sp. nov., isolated from a sulfur spring, Int. J. Syst. Evol. Microbiol., 60, 1052, 10.1099/ijs.0.014035-0

Lin, 2008, Pseudogulbenkiania subflava gen. nov., sp. nov., isolated from a cold spring, Int. J. Syst. Evol. Microbiol., 58, 2384, 10.1099/ijs.0.65755-0

Vaz-Moreira, 2007, Gulbenkiania mobilis gen. nov., sp. nov., isolated from treated municipal wastewater, Int. J. Syst. Evol. Microbiol., 57, 1108, 10.1099/ijs.0.64726-0

Weber, 2009, Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002, Appl. Microbiol. Biotechnol., 83, 555, 10.1007/s00253-009-1934-7

Gilbert, 1993, Bacterial cellulases and xylanases, J. Gen. Microbiol., 139, 187, 10.1099/00221287-139-2-187

Ivanen, 2009, Novel precipitated fluorescent substrates for the screening of cellulolytic microorganisms, J. Microbiol. Methods, 76, 295, 10.1016/j.mimet.2008.12.008

Wang, 2008, Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39, Lett. Appl. Microbiol., 47, 46, 10.1111/j.1472-765X.2008.02385.x

Jayashree, 2011, Cellulase production by Pink Pigmented Facultative Methylotrophic Strains (PPFMs), Appl. Biochem. Biotechnol., 164, 666, 10.1007/s12010-011-9166-6

Kummer, 1999, Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil, Int. J. Syst. Evol. Microbiol., 49, 1513, 10.1099/00207713-49-4-1513

Arenskotter, 2004, Biology of the metabolically diverse genus Gordonia, Appl. Environ. Microbiol., 70, 3195, 10.1128/AEM.70.6.3195-3204.2004

Kim, 2008, Degradation of various alkyl ethers by alkyl ether-degrading Actinobacteria isolated from activated sludge of a mixed wastewater treatment, Chemosphere, 73, 1442, 10.1016/j.chemosphere.2008.07.074

Sundman, 1968, Observations on bacterial utilization of the lignin from brown-rotted spruce wood and of Brauns’ native lignin, Finska Kemists. Medd., 77, 70

Haider, 1978, Screening for lignin degrading bacteria by means of 14C-labelled lignins, Arch. Microbiol., 119, 103, 10.1007/BF00407936

Trojanowski, 1977, Decomposition of 14C-labelled lignin and phenols by a Nocardia sp., Arch. Microbiol., 114, 149, 10.1007/BF00410776

Carder, 1986, Detection and quantitation of cellulase by Congo red staining of substrates in a cup-plate diffusion assay, Anal. Biochem., 153, 75, 10.1016/0003-2697(86)90063-1

Philippot, 2010, The ecological coherence of high bacterial taxonomic ranks, Nat. Rev. Microbiol., 8, 523, 10.1038/nrmicro2367

Berlemont, 2013, Phylogenetic distribution of potential cellulases in bacteria, Appl. Environ. Microbiol., 79, 1545, 10.1128/AEM.03305-12

Wirth, 2002, Cellulose-degrading potentials and phylogenetic classification of carboxymethyl-cellulose decomposing bacteria isolated from soil, Syst. Appl. Microbiol., 25, 584, 10.1078/07232020260517724

Ulrich, 2008, Activity of cellulose-decomposing bacteria, isolated from a sandy and a loamy soil after long-term manure application, Microb. Ecol., 55, 512, 10.1007/s00248-007-9296-0