Enzyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS) Promotes Biofilm Formation of Pseudomonas aeruginosa by Increasing Iron Availability
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anders, 2015, HTSeq - a Python framework to work with high-throughput sequencing data, Bioinformatics, 31, 166, 10.1093/bioinformatics/btu638
Banin, 2005, Iron and Pseudomonas aeruginosa biofilm formation, Proc. Natl. Acad. Sci. U.S.A., 102, 11076, 10.1073/pnas.0504266102
Beermann, 2007, Stability, unfolding, and structural changes of cofactor-free 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, Biochemistry, 46, 4241, 10.1021/bi0622423
Bredenbruch, 2006, The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity, Environ. Microbiol., 8, 1318, 10.1111/j.1462-2920.2006.01025.x
Breidenstein, 2012, The Lon protease is essential for full virulence in Pseudomonas aeruginosa, PLoS ONE, 7, e49123, 10.1371/journal.pone.0049123
Caballero, 2001, Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases, Anal. Biochem., 290, 330, 10.1006/abio.2001.4999
Déziel, 2005, The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones, Mol. Microbiol., 55, 998, 10.1111/j.1365-2958.2004.04448.x
Diggle, 2007, The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment, Chem. Biol., 14, 87, 10.1016/j.chembiol.2006.11.014
Diggle, 2003, The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR, Mol. Microbiol., 50, 29, 10.1046/j.1365-2958.2003.03672.x
Elias, 2011, FvbA is required for vibriobactin utilization in Pseudomonas aeruginosa, Microbiology, 157, 2172, 10.1099/mic.0.044768-0
Frangipani, 2014, The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa, Environ. Microbiol., 16, 676, 10.1111/1462-2920.12164
Frerichs-Deeken, 2004, Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion, Biochemistry, 43, 14485, 10.1021/bi048735u
Friedman, 2004, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms, Mol. Microbiol., 51, 675, 10.1046/j.1365-2958.2003.03877.x
García-Contreras, 2013, Resistance to quorum-quenching compounds, Appl. Environ. Microbiol., 79, 6840, 10.1128/aem.02378-13
Gellatly, 2013, Pseudomonas aeruginosa: new insights into pathogenesis and host defenses, Path. Dis., 67, 159, 10.1111/2049-632x.12033
Guo, 2014, PqsR-dependent and PqsR-independent regulation of motility and biofilm formation by PQS in Pseudomonas aeruginosa PAO1, J. Basic Microbiol., 54, 633, 10.1002/jobm.201300091
Hänsch, 2014, The Pseudomonas quinolone signal (PQS) stimulates chemotaxis of polymorphonuclear neutrophils, J. Appl. Biomater. Funct. Mater., 12, 21, 10.5301/jabfm.5000204
Hassett, 1997, An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels, J. Bacteriol., 179, 1452, 10.1128/jb.179.5.1452-1459.1997
Häussler, 2008, The Pseudomonas quinolone signal (PQS) balances life and death in Pseudomonas aeruginosa populations, PLoS Pathog., 4, e1000166, 10.1371/journal.ppat.1000166
Herigstad, 2001, How to optimize the drop plate method for enumerating bacteria, J. Microbiol. Methods, 44, 121, 10.1016/s0167-7012(00)00241-4
Hooi, 2004, Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules, Infect. Immun., 72, 6463, 10.1128/iai.72.11.6463-6470.2004
Hutchison, 1999, Pathogenicity of microbes associated with cystic fibrosis, Microbes Infect., 1, 1005, 10.1016/S1286-4579(99)80518-8
Leduc, 2007, The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis, Infect. Immun., 75, 3848, 10.1128/iai.00015-07
Lépine, 2003, A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures, Biochim. Biophys. Acta, 1622, 36, 10.1016/s0304-4165(03)00103-x
Lesic, 2007, Inhibitors of pathogen intercellular signals as selective anti-infective compounds, PLoS Pathog., 3, e126, 10.1371/journal.ppat.0030126
Li, 2013, Hydrophobic liquid-infused porous polymer surfaces for antibacterial applications, ACS Appl. Mater. Interfaces, 5, 6704, 10.1021/am401532z
Liberati, 2006, An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants, Proc. Natl. Acad. Sci. U.S.A., 103, 2833, 10.1073/pnas.0511100103
Love, 2014, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 550, 10.1186/s13059-014-0550-8
Lu, 2014, Overcoming the unexpected functional inversion of a PqsR antagonist in Pseudomonas aeruginosa: an in vivo potent antivirulence agent targeting pqs quorum sensing, Angew. Chem. Int. Ed. Engl., 53, 1109, 10.1002/anie.201307547
Mashburn, 2005, Membrane vesicles traffic signals and facilitate group activities in a prokaryote, Nature, 437, 422, 10.1038/nature03925
Murray, 2012, The carbon monoxide releasing molecule CORM-2 attenuates Pseudomonas aeruginosa biofilm formation, PLoS ONE, 7, e35499, 10.1371/journal.pone.0035499
Musk, 2005, Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa, Chem. Biol., 12, 789, 10.1016/j.chembiol.2005.05.007
Müsken, 2010, Genetic determinants of Pseudomonas aeruginosa biofilm establishment, Microbiology, 156, 431, 10.1099/mic.0.033290-0
Ochsner, 2002, GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes, Mol. Microbiol., 45, 1277, 10.1046/j.1365-2958.2002.03084.x
Overhage, 2008, Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance, J. Bacteriol., 190, 2671, 10.1128/jb.01659-07
Patriquin, 2008, Influence of quorum sensing and iron on twitching motility and biofilm formation in Pseudomonas aeruginosa, J. Bacteriol., 190, 662, 10.1128/jb.01473-07
Pesci, 1999, Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. U.S.A., 11229
Pustelny, 2009, Dioxygenase-mediated quenching of quinolone-dependent quorum sensing in Pseudomonas aeruginosa, Chem. Biol., 16, 1259, 10.1016/j.chembiol.2009.11.013
Rahme, 1995, Common virulence factors for bacterial pathogenicity in plants and animals, Science, 268, 1899, 10.1126/science.7604262
Rajan, 2002, Pulmonary infections in patients with cystic fibrosis, Semin. Respir. Infect., 17, 47, 10.1053/srin.2002.31690
Schweizer, 1996, Regulation of glycerol metabolism in Pseudomonas aeruginosa: characterization of the glpR repressor gene, J. Bacteriol., 178, 5215, 10.1128/jb.178.17.5215-5221.1996
Singh, 2004, Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation, Biometals, 17, 267, 10.1023/B:BIOM.0000027703.77456.27
Singh, 2002, A component of innate immunity prevents bacterial biofilm development, Nature, 417, 552, 10.1038/417552a
Skindersoe, 2009, Pseudomonas aeruginosa quorum-sensing signal molecules interfere with dendritic cell-induced T-cell proliferation, FEMS Immunol. Med. Microbiol., 55, 335, 10.1111/j.1574-695X.2008.00533.x
Sonnleitner, 2011, Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species, Appl. Microbiol. Biotechnol., 91, 63, 10.1007/s00253-011-3332-1
Storz, 2012, Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by development of small-molecule inhibitors, J. Am. Chem. Soc., 134, 16143, 10.1021/ja3072397
Tettmann, 2014, Knockout of extracytoplasmic function sigma factor ECF-10 affects stress resistance and biofilm formation in Pseudomonas putida KT2440, Appl. Environ. Microbiol., 80, 4911, 10.1128/aem.01291-14
Thaden, 2010, Quorum-sensing regulation of a copper toxicity system in Pseudomonas aeruginosa, J. Bacteriol., 192, 2557, 10.1128/jb.01528-09
Wade, 2005, Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa, J. Bacteriol., 187, 4372, 10.1128/JB.187.13.4372-4380.2005
Wells, 1952, Ozonization of some antibiotic substances produced by Pseudomonas aeruginosa, J. Biol. Chem., 196, 321, 10.1016/S0021-9258(18)55736-7
Wilderman, 2004, Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis, Proc. Natl. Acad. Sci. U.S.A., 101, 9792, 10.1073/pnas.0403423101
Williams, 2007, Look who's talking: communication and quorum sensing in the bacterial world, Philos. Trans. R. Soc. London Ser B, 362, 1119, 10.1098/rstb.2007.2039
Winsor, 2009, Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes, Nucl. Acids Res., 37, D483, 10.1093/nar/gkn861
Xiao, 2006, MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR-class regulatory protein, has dual ligands, Mol. Microbiol., 62, 1689, 10.1111/j.1365-2958.2006.05462.x
Yang, 2007, Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa, Microbiology, 153, 1318, 10.1099/mic.0.2006/004911-0