Enzalutamide Reduces Oxycodone Exposure in Men with Prostate Cancer

Springer Science and Business Media LLC - Tập 62 - Trang 989-996 - 2023
S. E. H. Detert Oude Weme1, L. M. G. Hulskotte1,2, W. L. Vervenne3, A. L. T. Imholz3, R. G. H. M. Cremers4, K. Taxis2, A. K. L. Reyners5, I. R. F. van Berlo-van de Laar1, F. G. A. Jansman1,2, G. E. Benoist1
1Department of Clinical Pharmacy, Deventer Teaching Hospital, Deventer, The Netherlands
2Unit of PharmacoTherapy, -Epidemiology &-Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, the Netherlands
3Department of Medical Oncology, Deventer Teaching Hospital, Deventer, The Netherlands
4Department of Urology, Deventer Teaching Hospital, Deventer, The Netherlands
5Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands

Tóm tắt

Up to 90% of patients with castration-resistant prostate cancer (CRPC) will develop symptomatic bone metastases requiring pain medication, with opioids being the mainstay of therapy in treating moderate and severe pain. Enzalutamide is an androgen receptor antagonist for the treatment of CRPC and a strong inducer of cytochrome P450 (CYP)3A4. Hereby, enzalutamide potentially reduces the exposure of oxycodone, an opioid metabolized by CYP3A4 and CYP2D6. Our objective was to evaluate the potential drug–drug interaction of enzalutamide and oxycodone. A prospective, nonrandomized, open-label, two-arm parallel study was performed. All patients received a single dose of 15 mg normal-release oxycodone. Patients in the enzalutamide arm (ENZ-arm) received enzalutamide 160 mg once daily. Plasma concentrations of oxycodone and its metabolites were quantified using a validated liquid chromatography with tandem mass spectrometry (LC–MS/MS) method. Twenty-six patients (13 ENZ-arm; 13 control arm) were enrolled in the study. Enzalutamide decreased the mean AUC0–8 h and Cmax of oxycodone with, respectively, 44.7% (p < 0.001) and 35.5% (p = 0.004) compared with the control arm. The AUC0–8 h and Cmax of the active metabolite oxymorphone were 74.2% (p < 0.001) and 56.0% (p = 0.001) lower in the ENZ-arm compared with the control arm. In contrast, AUC0–8 h and Cmax of the inactive metabolites noroxycodone and noroxymorphone were significantly increased by enzalutamide. Co-administration of enzalutamide significantly reduced exposure to oxycodone and its active metabolite oxymorphone in men with prostate cancer. This should be taken into account when prescribing enzalutamide combined with oxycodone.

Tài liệu tham khảo

Factsheet: Cancer Today; Europe. In: Global Cancer Observatory, International Agency for Research on Cancer. https://gco.iarc.fr/today/data/factsheets/populations/908-europe-fact-sheets.pdf. 2021. Accessed 24 June 2022.

Jiang W, Rixiati Y, Zhao B, Li Y, Tang C, Liu J. Incidence, prevalence, and outcomes of systemic malignancy with bone metastases. J Orthop Surg (Hong Kong). 2020. https://doi.org/10.1177/2309499020915989.

Mottet N, Cornford P, van den Bergh RCN, et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG guidelines on prostate cancer. In: Presented at the EAU annual congress Amsterdam 2022 (ISBN 978-94-92671-16-5).

Fallon M, Giusti R, Aielli F, et al. ESMO Guidelines Committee. Management of cancer pain in adult patients: ESMO Clinical Practice Guidelines. Ann Oncol. 2018;29(Suppl 4):iv166–91. https://doi.org/10.1093/annonc/mdy152.

Klimas R, Witticke D, El Fallah S, Mikus G. Contribution of oxycodone and its metabolites to the overall analgesic effect after oxycodone administration. Expert Opin Drug Metab Toxicol. 2013;9(5):517–28. https://doi.org/10.1517/17425255.2013.779669.

EMA. European Public Assessment Report (EPAR) Xtandi (Enzalutamide) 2022. https://www.ema.europa.eu/en/documents/product-information/xtandi-epar-product-information_en.pdf. 2013. Accessed 27 June 2022.

Gibbons JA, de Vries M, Krauwinkel W, Ohtsu Y, Noukens J, van der Walt JS, et al. Pharmacokinetic drug interaction studies with enzalutamide. Clin Pharmacokinet. 2015;54(10):1057–69. https://doi.org/10.1007/s40262-015-0283-1.

EMA. European Public Assessment Report (EPAR) Suboxone 2021. https://www.ema.europa.eu/en/documents/product-information/suboxone-epar-product-information_en.pdf. 2009. Accessed 14 Dec 2022.

Benoist GE, van Oort IM, Burger DM, Koch BCP, Mehra N, van Erp NP. The combination of enzalutamide and opioids: a painful pitfall? Eur Urol. 2019;75(2):351–2. https://doi.org/10.1016/j.eururo.2018.09.011.

Nieminen TH, Hagelberg NM, Saari TI, Pertovaara A, Neuvonen M, Laine K, et al. Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology. 2009;110(6):1371–8. https://doi.org/10.1097/ALN.0b013e31819faa54.

Westdorp H, Kuip EJM, van Oort IM, Kramers C, Gerritsen WR, Vissers KCP. Difficulties in pain management using oxycodone and fentanyl in enzalutamide-treated patients with advanced prostate cancer. J Pain Symptom Manage. 2018;55(4):e6–8. https://doi.org/10.1016/j.jpainsymman.2017.11.016.

Grönlund J, Saari TI, Hagelberg N, Neuvonen PJ, Olkkola KT, Laine K. Miconazole oral gel increases exposure to oral oxycodone by inhibition of CYP2D6 and CYP3A4. Antimicrob Agents Chemother. 2011;55(3):1063–7. https://doi.org/10.1128/AAC.01242-10.

Pöyhiä R, Seppälä T, Olkkola KT, Kalso E. The pharmacokinetics and metabolism of oxycodone after intramuscular and oral administration to healthy subjects. Br J Clin Pharmacol. 1992;33(6):617–21. https://doi.org/10.1111/j.1365-2125.1992.tb04090.x.

Hagelberg NM, Nieminen TH, Saari TI, Neuvonen M, Neuvonen PJ, Laine K, Olkkola KT. Voriconazole drastically increases exposure to oral oxycodone. Eur J Clin Pharmacol. 2009;65(3):263–71. https://doi.org/10.1007/s00228-008-0568-5.

Benoist GE, van Oort IM, Smeenk S, et al. Drug-drug interaction potential in men treated with enzalutamide: mind the gap. Br J Clin Pharmacol. 2018;84(1):122–9. https://doi.org/10.1111/bcp.13425.

Grönlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K. Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol. 2010;70(1):78–87. https://doi.org/10.1111/j.1365-2125.2010.03653.x.

Nieminen TH, Hagelberg NM, Saari TI, Neuvonen M, Laine K, Neuvonen PJ, Olkkola KT. St John’s wort greatly reduces the concentrations of oral oxycodone. Eur J Pain. 2010;14(8):854–9. https://doi.org/10.1016/j.ejpain.2009.12.007.

Lee JH, Kuhar S, Seo JH, Pasricha PJ, Mittal R. Computational modeling of drug dissolution in the human stomach: effects of posture and gastroparesis on drug bioavailability. Phys Fluids. 2022;34(8): 081904. https://doi.org/10.1063/5.0096877.