Environmental variation mediates the prevalence and co-occurrence of parasites in the common lizard, Zootoca vivipara

Qiang Wu1, Murielle Richard1, Alexis Rutschmann1, Donald B. Miles1, Jean Clobert1
1CNRS, Station d’Ecologie Théorique et Expérimentale, UMR 5321 and Université Toulouse III-Paul Sabatier, 09200, Moulis, France

Tóm tắt

Abstract Background Hosts and their parasites are under reciprocal selection, leading to coevolution. However, parasites depend not only on a host, but also on the host’s environment. In addition, a single host species is rarely infested by a single species of parasite and often supports multiple species (i.e., multi-infestation). Although the arms race between a parasite and its host has been well studied, few data are available on how environmental conditions may influence the process leading to multiple infestations. In this study, we examine whether: (1) environmental factors including altitude, temperature, vegetation cover, human disturbance, and grazing by livestock affect the prevalence of two types of ectoparasites, mites and ticks, on their host (the common lizard, Zootoca vivipara) and (2) competition is evident between mites and ticks. Results We found the probability of mite infestation increased with altitude and vegetation cover, but decreased with human disturbance and presence of livestock. In contrast, the probability of tick infestation was inversely associated with the same factors. Individuals with low body condition and males had higher mite loads. However, this pattern was not evident for tick loads. The results from a structural equation model revealed that mites and ticks indirectly and negatively affected each other’s infestation probability through an interaction involving the environmental context. We detected a direct negative association between mites and ticks only when considering estimates of parasite load. This suggests that both mites and ticks could attach to the same host, but once they start to accumulate, only one of them takes advantage. Conclusion The environment of hosts has a strong effect on infestation probabilities and parasite loads of mites and ticks. Autecological differences between mites and ticks, as indicated by their opposing patterns along environmental gradients, may explain the pattern of weak contemporary interspecific competition. Our findings emphasize the importance of including environmental factors and the natural history of each parasite species in studies of host–parasite coevolution.

Từ khóa


Tài liệu tham khảo

Poulin R. Evolutionary ecology of parasites. Princeton: Princeton University Press; 2011.

Sheldon BC, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol. 1996;11:317–21.

Schmid-Hempel P. Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford: Oxford University Press; 2011.

Hamilton WD. Sex versus non-sex versus parasite. Oikos. 1980;35:282–90.

Daly EW, Johnson PT. Beyond immunity: quantifying the effects of host anti-parasite behavior on parasite transmission. Oecologia. 2011;165:1043–50.

Råberg L, Sim D, Read AF. Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science. 2007;318:812–4.

Bulet P, Stöcklin R, Menin L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev. 2004;198:169–84.

Pedersen AB, Fenton A. Emphasizing the ecology in parasite community ecology. Trends Ecol Evol. 2007;22:133–9.

Rigaud T, Perrot-Minnot MJ, Brown MJ. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Proc R Soc B Biol Sci. 2010;277:3693–702.

Ebert D, Weisser WW. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites. Proc R Soc B Biol Sci. 1997;264:985–91.

Krasnov BR, Burdelova NV, Khokhlova IS, Shenbrot GI, Degen A. Larval interspecific competition in two flea species parasitic on the same rodent host. Ecol Entomol. 2005;30:146–55.

Read CP. The “crowding effect” in tapeworm infections. J Parasitol. 1951;37:174–8.

Pollock NB, Gawne E, Taylor EN. Effects of temperature on feeding duration, success, and efficiency of larval western black-legged ticks (Acari: Ixodidae) on western fence lizards. Exp Appl Acarol. 2015;67:299–307.

Moyer BR, Drown DM, Clayton DH. Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos. 2002;97:223–8.

Spoecker PD. Ectoparasites of a Mojave desert population of the lizard Uta stansburiana stejnegeri Schmidt. Am Midl Nat. 1967;77:539–42.

Tälleklint-Eisen L, Eisen RJ. Abundance of ticks (Acari: Ixodidae) infesting the western fence lizard, Sceloporus occidentalis, in relation to environmental factors. Exp Appl Acarol. 1999;23:731–40.

Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD. Climate warming and disease risks for terrestrial and marine biota. Science. 2002;296:2158–62.

Gillespie TR, Chapman CA. Forest fragmentation, the decline of an endangered primate, and changes in host–parasite interactions relative to an unfragmented forest. Am J Primatol. 2008;70:222–30.

Amo L, López P, Martí J. Nature-based tourism as a form of predation risk affects body condition and health state of Podarcis muralis lizards. Biol Conserv. 2006;131:402–9.

Pafilis P, Anastasiou I, Sagonas K, Valakos ED. Grazing by goats on islands affects the populations of an endemic Mediterranean lizard. J Zool. 2013;290:255–64.

Pettigrew M, Bull CM. The impact of heavy grazing on burrow choice in the pygmy bluetongue lizard, Tiliqua adelaidensis. Wildlife Res. 2011;38:299–306.

Gottdenker NL, Streicker DG, Faust CL, Carroll CR. Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth. 2014;11:619–32.

Brooks DR, Hoberg EP. How will global climate change affect parasite-host assemblages? Trends Parasitol. 2007;23:571–4.

Gray JS, Dautel H, Estrada-Pena A, Kahl O, Lindgren E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis. 2009;2009:593232.

Cooper JE, Jackson OF. Diseases of the Reptilia. London: Academic Press; 1981.

Sorci G, Fraipont MD, Clobert J. Host density and ectoparasite avoidance in the common lizard (Lacerta vivipara). Oecologia. 1997;111:183–8.

Sorci G, Clobert J. Effects of maternal parasite load on offspring life-history traits in the common lizard (Lacerta vivipara). J Evol Biol. 1995;8:711–23.

Sorci G, Massot M, Clobert J. Maternal parasite load increases sprint speed and philopatry in female offspring of the common lizard. Am Nat. 1994;144:153–64.

Zippel K, Powell R, Parmerlee J, Monks S, Lathrop A, Smith D. The distribution of larval Eutrombicula alfreddugesi (Acari: Trombiculidae) infesting Anolis lizards (Lacertilia: Polychrotidae) from different habitats on Hispaniola. Caribb J Sci. 1996;32:43–9.

Eisen R, Wright N. Landscape features associated with infection by a malaria parasite (Plasmodium mexicanum) and the importance of multiple scale studies. Parasitology. 2001;122:507–13.

García-ramírez A, Delgado-garcía JD, Foronda-rodríguez P, Abreu-acosta N. Haematozoans, mites and body condition in the oceanic island lizard Gallotia atlantica (Peters and Doria, 1882) (Reptilia: Lacertidae). J Nat Hist. 2005;39:1299–305.

Casher L, Lane R, Barrett R, Eisen L. Relative importance of lizards and mammals as hosts for ixodid ticks in northern California. Exp Appl Acarol. 2002;26:127–43.

Chilton NB, Bull CM. A comparison of the off-host survival times of larvae and nymphs of two species of reptile ticks. Int J Parasitol. 1993;23:693–6.

Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P. Seasonality and the dynamics of infectious diseases. Ecol Lett. 2006;9:467–84.

Jones AR, Bull CM, Brook BW, Wells K, Pollock KH, Fordham DA. Tick exposure and extreme climate events impact survival and threaten the persistence of a long-lived lizard. J Anim Ecol. 2016;85:598–610.

Klein SL. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev. 2000;24:627–38.

Salvador A, Veiga JP, Martin J, Lopez P, Abelenda M, Puertac M. The cost of producing a sexual signal: testosterone increases the susceptibility of male lizards to ectoparasitic infestation. Behav Ecol. 1996;7:145–50.

Bauwens D, Strijbosch H, Stumpel AHP. The lizards Lacerta agilis and L. vivipara as hosts to larvae and nymphs of the tick Ixodes ricinus. Holarctic Ecol. 1983;6:32–40.

Folstad I, Karter AJ. Parasites, bright males, and the immunocompetence handicap. Am Nat. 1992;139:603–22.

Bacelar FS, White A, Boots M. Life history and mating systems select for male biased parasitism mediated through natural selection and ecological feedbacks. J Theor Biol. 2011;269:131–7.

Silk MJ, Weber NL, Steward LC, Hodgson DJ, Boots M, Croft DP, Delahay RJ, McDonald RA. Contact networks structured by sex underpin sex-specific epidemiology of infection. Ecol Lett. 2018;21:309–18.

Le Galliard J-F, Fitze PS, Ferrière R, Clobert J. Sex ratio bias, male aggression, and population collapse in lizards. Proc Natl Acad Sci USA. 2005;102:18231–6.

McCurdy DG, Shutler D, Mullie A, Forbes MR. Sex-biased parasitism of avian hosts: relations to blood parasite taxon and mating system. Oikos. 1998;82:303–12.

Fuxjager MJ, Foufopoulos J, Diaz-Uriarte R, Marler CA. Functionally opposing effects of testosterone on two different types of parasite: implications for the immunocompetence handicap hypothesis. Funct Ecol. 2011;25:132–8.

Oppliger A, Clobert J. Reduced tail regeneration in the common lizard, Lacerta vivipara, parasitized by blood parasites. Funct Ecol. 1997;11:652–5.

Meylan S, Richard M, Bauer S, Haussy C, Miles D. Costs of mounting an immune response during pregnancy in a lizard. Physiol Biochem Zool. 2012;86:127–36.

Andrews RH, Petney TN. Competition for sites of attachment to hosts in three parapatric species of reptile tick. Oecologia. 1981;51:227–32.

Heredia VJ, Vicente N, Robles C, Halloy M. Mites in the Neotropical lizard Liolaemus pacha (Iguania: Liolaemidae): relation to body size, sex and season. S Am J Herpetol. 2014;9:14–9.

Pilorge T. Density, size structure, and reproductive characteristics of three populations of Lacerta vivipara (Sauria Lacertidae). Herpetologica. 1987;43:345–56.

Bannert B, Karaca H, Wohltmann A. Life cycle and parasitic interaction of the lizard-parasitizing mite Ophionyssus galloticolus (Acari: Gamasida: Macronyssidae), with remarks about the evolutionary consequences of parasitism in mites. Exp Appl Acarol. 2000;24:597–613.

Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Peña A, George J-C, Golovljova I, Jaenson TG, Jensen J-K, Jensen PM. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasite Vector. 2013;6:1.

Capinera JL. Encyclopedia of entomology. Berlin: Springer; 2008.

Gray JS. The development and seasonal activity of the tick Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Entomol. 1991;79:323–33.

Cévennes—Wikipedia. https://en.wikipedia.org/wiki/Cévennes#/media/File:MC_cevenes.jpg . Accessed 22 June 2016.

Rutschmann A, Miles DB, Galliard L, Richard M, Moulherat S, Sinervo B, Clobert J. Climate and habitat interact to shape the thermal reaction norms of breeding phenology across lizard populations. J Anim Ecol. 2016;85:457–66.

Revelle WR. psych: Procedures for personality and psychological research, Northwestern University, Evanston, Illinois, USA. URL https://CRAN.R-project.org/package=psych . Version = 1.7.8. 2017.

Jackson DA. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology. 1993;74:2204–14.

Dalrymple ML, Hudson IL, Ford RPK. Finite mixture, zero-inflated Poisson and hurdle models with application to SIDS. Comput Stat Data Anal. 2003;41:491–504.

Crawley M. The R book. New York: Wiley; 2007.

Fox J, Weisberg S. An R companion to applied regression. 2nd ed. Thousand Oaks: Sage; 2011.

Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol. 2010;1:3–14.

Barton K. MuMIn: multi-model inference. R package version 1. 40. 4. 2018.

Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. New York: Springer; 2002.

Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol. 2009;24:127–35.

Lefcheck JS. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol Evol. 2016;7:573–9.

Shipley B. The AIC model selection method applied to path analytic models compared using a d-separation test. Ecology. 2013;94:560–4.

Shipley B. Confirmatory path analysis in a generalized multilevel context. Ecology. 2009;90:363–8.