Environmental factors that shape biofilm formation
Tóm tắt
Từ khóa
Tài liệu tham khảo
O’Toole, 2000, Biofilm formation as microbial development, Annu. Rev. Microbiol., 54, 49, 10.1146/annurev.micro.54.1.49
Westall, 2001, Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa, Precambrian Res., 106, 93, 10.1016/S0301-9268(00)00127-3
Lerchner, 2008, Miniaturized calorimetry—A new method for real-time biofilm activity analysis, J. Microbiol. Methods, 74, 74, 10.1016/j.mimet.2008.04.004
Stoodley, 2002, Biofilms as complex differentiated communities, Annu. Rev. Microbiol., 56, 187, 10.1146/annurev.micro.56.012302.160705
Donlan, 2002, Biofilms: survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 15, 167, 10.1128/CMR.15.2.167-193.2002
Nickel, 1985, Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material, Antimicrob. Agents Chemother., 27, 619, 10.1128/AAC.27.4.619
Vlamakis, 2008, Control of cell fate by the formation of an architecturally complex bacterial community, Genes Dev., 22, 945, 10.1101/gad.1645008
Parsek, 2005, Sociomicrobiology: the connections between quorum sensing and biofilms, Trends Microbiol., 13, 27, 10.1016/j.tim.2004.11.007
Hall-Stoodley, 2004, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95, 10.1038/nrmicro821
O’Toole, 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 28, 449, 10.1046/j.1365-2958.1998.00797.x
O’Toole, 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 30, 295, 10.1046/j.1365-2958.1998.01062.x
Petrova, 2012, Sticky situations: key components that control bacterial surface attachment, J. Bacteriol., 194, 2413, 10.1128/JB.00003-12
Caiazza, 2004, SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14, J. Bacteriol., 186, 4476, 10.1128/JB.186.14.4476-4485.2004
Hinsa, 2003, Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein, Mol. Microbiol., 49, 905, 10.1046/j.1365-2958.2003.03615.x
Ono, 2014, cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1, Microbes Environ., 29, 104, 10.1264/jsme2.ME13151
McDonough, 2012, The myriad roles of cyclic AMP in microbial pathogens: from signal to sword, Nat. Rev. Microbiol., 10, 27, 10.1038/nrmicro2688
Yawata, 2014, Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations, Proc. Natl. Acad. Sci. U.S.A., 111, 5622, 10.1073/pnas.1318943111
Zhao, 2013, Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms, Nature, 497, 388, 10.1038/nature12155
Drescher, 2014, Solutions to the public goods dilemma in bacterial biofilms, Curr. Biol., 24, 50, 10.1016/j.cub.2013.10.030
Stoodley, 1994, Liquid flow in biofilm systems, Appl. Environ. Microbiol., 60, 2711, 10.1128/AEM.60.8.2711-2716.1994
Wilking, 2013, Liquid transport facilitated by channels in Bacillus subtilis biofilms, Proc. Natl. Acad. Sci. U.S.A., 110, 848, 10.1073/pnas.1216376110
Yawata, 2008, Development of a novel biofilm continuous culture method for simultaneous assessment of architecture and gaseous metabolite production, Appl. Environ. Microbiol., 74, 5429, 10.1128/AEM.00801-08
Fang, 2013, The impact of anaerobiosis on strain-dependent phenotypic variations in Pseudomonas aeruginosa, Biosci. Biotechnol. Biochem., 77, 1747, 10.1271/bbb.130309
Hamada, 2014, cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1, J. Bacteriol., 196, 3881, 10.1128/JB.01978-14
Obana, 2014, A sporulation factor is involved in the morphological change of Clostridium perfringens biofilms in response to temperature, J. Bacteriol., 196, 1540, 10.1128/JB.01444-13
Boles, 2008, Endogenous oxidative stress produces diversity and adaptability in biofilm communities, Proc. Natl. Acad. Sci. U.S.A., 105, 12503, 10.1073/pnas.0801499105
McDougald, 2012, Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal, Nat. Rev. Microbiol., 10, 39, 10.1038/nrmicro2695
Römling, 2013, Cyclic di-GMP: the first 25 years of a universal bacterial second messenger, Microbiol. Mol. Biol. Rev., 77, 1, 10.1128/MMBR.00043-12
Fuqua, 1994, Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators, J. Bacteriol., 176, 269, 10.1128/JB.176.2.269-275.1994
Rutherford, 2012, Bacterial quorum sensing: its role in virulence and possibilities for its control, Cold Spring Harb. Perspect. Med., 2, a012427, 10.1101/cshperspect.a012427
Schuster, 2013, Acyl-homoserine lactone quorum sensing: from evolution to application, Annu. Rev. Microbiol., 67, 43, 10.1146/annurev-micro-092412-155635
Toyofuku, 2007, Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1, J. Bacteriol., 189, 4969, 10.1128/JB.00289-07
Toyofuku, 2008, Influence of the Pseudomonas quinolone signal on denitrification in Pseudomonas aeruginosa, J. Bacteriol., 190, 7947, 10.1128/JB.00968-08
Tashiro, 2010, Variation of physiochemical properties and cell association activity of membrane vesicles with growth phase in Pseudomonas aeruginosa, Appl. Environ. Microbiol., 76, 3732, 10.1128/AEM.02794-09
Tashiro, 2012, Multifunctional membrane vesicles in Pseudomonas aeruginosa, Environ. Microbiol., 14, 1349, 10.1111/j.1462-2920.2011.02632.x
Davies, 1998, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 280, 295, 10.1126/science.280.5361.295
Boles, 2008, agr-Mediated dispersal of Staphylococcus aureus biofilms, PLoS Pathog., 4, e1000052, 10.1371/journal.ppat.1000052
Zhu, 2003, Quorum sensing-dependent biofilms enhance colonization in Vibrio cholera, Dev. Cell, 5, 647, 10.1016/S1534-5807(03)00295-8
de Kievit, 2009, Quorum sensing in Pseudomonas aeruginosa biofilms, Environ. Microbiol., 11, 279, 10.1111/emi.2009.11.issue-2
Toyofuku, 2012, Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix, J. Proteome Res., 11, 4906, 10.1021/pr300395j
Korber, 1989, The effect of laminar flow on the kinetics of surface recolonization by mott and mot- Pseudomonas fluorescens, Microb. Ecol., 18, 1, 10.1007/BF02011692
Lawrence, 1991, Optical sectioning of microbial biofilms, J. Bacteriol., 173, 6558, 10.1128/JB.173.20.6558-6567.1991
Palmer, 1999, Modern microscopy in biofilm research: confocal microscopy and other approaches, Curr. Opin. Biotechnol., 10, 263, 10.1016/S0958-1669(99)80046-9
Korber, 1999, Reporter systems for microscopic analysis of microbial biofilms, Methods Enzymol., 310, 3, 10.1016/S0076-6879(99)10003-X
McLean RJ, Bates CCL, Barnes MB, McGowin CL, Aron GM. Methods of studying biofilms. In: Ghannoum M, O’Tool GA, editors. Microbial biofilms. Washington, DC: ASM Press; 2004. p. 379–413.
Yawata, 2010, Monitoring biofilm development in a microfluidic device using modified confocal reflection microscopy, J. Biosci. Bioeng., 110, 377, 10.1016/j.jbiosc.2010.04.002
Inaba, 2013, Three- dimensional visualization of mixed species biofilm formation together with its substratum, Microbiol. Immunol., 57, 589, 10.1111/mim.v57.8
Yawata, 2010, Visualizing the effects of biofilm structures on the influx of fluorescent material using combined confocal reflection and fluorescent microscopy, Microbes Environ., 25, 49, 10.1264/jsme2.ME09169
Zhu, 2007, Staphylococcus aureus biofilm metabolism and the influence of arginine on polysaccharide intercellular adhesin synthesis, biofilm formation, and pathogenesis, Infect. Immun., 75, 4219, 10.1128/IAI.00509-07
Rusconi, 2014, Microfluidics expanding the frontiers of microbial ecology, Annu. Rev. Biophys., 43, 65, 10.1146/annurev-biophys-051013-022916
Richter, 2007, Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics, Lab Chip, 7, 1723, 10.1039/b708236c
Toda, 2011, Continuous monitoring of ammonia removal activity and observation of morphology of microbial complexes in a microdevice, Appl. Environ. Microbiol., 77, 4253, 10.1128/AEM.01246-10
Yawata, 2010, Bacterial growth monitoring in a microfluidic device by confocal reflection microscopy, J. Biosci. Bioeng., 110, 130, 10.1016/j.jbiosc.2010.01.009
Kim, 2012, Microfluidic approaches to bacterial biofilm formation, Molecules, 17, 9818, 10.3390/molecules17089818
Wessel, 2013, Going local: technologies for exploring bacterial microenvironments, Nat. Rev. Microbiol., 11, 337, 10.1038/nrmicro3010
Elowitz, 2002, Stochastic gene expression in a single cell, Science, 297, 1183, 10.1126/science.1070919
Williamson, 2012, Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population, J. Bacteriol., 194, 2062, 10.1128/JB.00022-12
Vlamakis, 2008, Control of cell fate by the formation of an architecturally complex bacterial community, Genes Dev., 22, 945, 10.1101/gad.1645008