Environmental factors that shape biofilm formation

Bioscience, Biotechnology and Biochemistry - Tập 80 Số 1 - Trang 7-12 - 2016
Masanori Toyofuku1, Tomohiro Inaba1, Tatsunori Kiyokawa1, Nozomu Obana1, Yutaka Yawata2, Nobuhiko Nomura1
1Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
2Departoment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA

Tóm tắt

Abstract Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell’s decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.

Từ khóa


Tài liệu tham khảo

Flemming, 2010, The biofilm matrix, Nat. Rev. Microbiol., 8, 623, 10.1038/nrmicro2415

O’Toole, 2000, Biofilm formation as microbial development, Annu. Rev. Microbiol., 54, 49, 10.1146/annurev.micro.54.1.49

Westall, 2001, Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa, Precambrian Res., 106, 93, 10.1016/S0301-9268(00)00127-3

Lerchner, 2008, Miniaturized calorimetry—A new method for real-time biofilm activity analysis, J. Microbiol. Methods, 74, 74, 10.1016/j.mimet.2008.04.004

Stoodley, 2002, Biofilms as complex differentiated communities, Annu. Rev. Microbiol., 56, 187, 10.1146/annurev.micro.56.012302.160705

Donlan, 2002, Biofilms: survival mechanisms of clinically relevant microorganisms, Clin. Microbiol. Rev., 15, 167, 10.1128/CMR.15.2.167-193.2002

Nickel, 1985, Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material, Antimicrob. Agents Chemother., 27, 619, 10.1128/AAC.27.4.619

Vlamakis, 2008, Control of cell fate by the formation of an architecturally complex bacterial community, Genes Dev., 22, 945, 10.1101/gad.1645008

Parsek, 2005, Sociomicrobiology: the connections between quorum sensing and biofilms, Trends Microbiol., 13, 27, 10.1016/j.tim.2004.11.007

Hall-Stoodley, 2004, Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95, 10.1038/nrmicro821

O’Toole, 1998, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 28, 449, 10.1046/j.1365-2958.1998.00797.x

O’Toole, 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 30, 295, 10.1046/j.1365-2958.1998.01062.x

Petrova, 2012, Sticky situations: key components that control bacterial surface attachment, J. Bacteriol., 194, 2413, 10.1128/JB.00003-12

Caiazza, 2004, SadB is required for the transition from reversible to irreversible attachment during biofilm formation by Pseudomonas aeruginosa PA14, J. Bacteriol., 186, 4476, 10.1128/JB.186.14.4476-4485.2004

Hinsa, 2003, Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein, Mol. Microbiol., 49, 905, 10.1046/j.1365-2958.2003.03615.x

Ono, 2014, cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1, Microbes Environ., 29, 104, 10.1264/jsme2.ME13151

McDonough, 2012, The myriad roles of cyclic AMP in microbial pathogens: from signal to sword, Nat. Rev. Microbiol., 10, 27, 10.1038/nrmicro2688

Yawata, 2014, Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations, Proc. Natl. Acad. Sci. U.S.A., 111, 5622, 10.1073/pnas.1318943111

Zhao, 2013, Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms, Nature, 497, 388, 10.1038/nature12155

Drescher, 2014, Solutions to the public goods dilemma in bacterial biofilms, Curr. Biol., 24, 50, 10.1016/j.cub.2013.10.030

Stoodley, 1994, Liquid flow in biofilm systems, Appl. Environ. Microbiol., 60, 2711, 10.1128/AEM.60.8.2711-2716.1994

Wilking, 2013, Liquid transport facilitated by channels in Bacillus subtilis biofilms, Proc. Natl. Acad. Sci. U.S.A., 110, 848, 10.1073/pnas.1216376110

Yawata, 2008, Development of a novel biofilm continuous culture method for simultaneous assessment of architecture and gaseous metabolite production, Appl. Environ. Microbiol., 74, 5429, 10.1128/AEM.00801-08

Fang, 2013, The impact of anaerobiosis on strain-dependent phenotypic variations in Pseudomonas aeruginosa, Biosci. Biotechnol. Biochem., 77, 1747, 10.1271/bbb.130309

Hamada, 2014, cbb3-type cytochrome c oxidases, aerobic respiratory enzymes, impact the anaerobic life of Pseudomonas aeruginosa PAO1, J. Bacteriol., 196, 3881, 10.1128/JB.01978-14

Obana, 2014, A sporulation factor is involved in the morphological change of Clostridium perfringens biofilms in response to temperature, J. Bacteriol., 196, 1540, 10.1128/JB.01444-13

Boles, 2008, Endogenous oxidative stress produces diversity and adaptability in biofilm communities, Proc. Natl. Acad. Sci. U.S.A., 105, 12503, 10.1073/pnas.0801499105

McDougald, 2012, Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal, Nat. Rev. Microbiol., 10, 39, 10.1038/nrmicro2695

Römling, 2013, Cyclic di-GMP: the first 25 years of a universal bacterial second messenger, Microbiol. Mol. Biol. Rev., 77, 1, 10.1128/MMBR.00043-12

Fuqua, 1994, Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators, J. Bacteriol., 176, 269, 10.1128/JB.176.2.269-275.1994

Rutherford, 2012, Bacterial quorum sensing: its role in virulence and possibilities for its control, Cold Spring Harb. Perspect. Med., 2, a012427, 10.1101/cshperspect.a012427

Bassler, 2006, Bacterially speaking, Cell, 125, 237, 10.1016/j.cell.2006.04.001

Schuster, 2013, Acyl-homoserine lactone quorum sensing: from evolution to application, Annu. Rev. Microbiol., 67, 43, 10.1146/annurev-micro-092412-155635

Toyofuku, 2007, Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1, J. Bacteriol., 189, 4969, 10.1128/JB.00289-07

Toyofuku, 2008, Influence of the Pseudomonas quinolone signal on denitrification in Pseudomonas aeruginosa, J. Bacteriol., 190, 7947, 10.1128/JB.00968-08

Tashiro, 2010, Variation of physiochemical properties and cell association activity of membrane vesicles with growth phase in Pseudomonas aeruginosa, Appl. Environ. Microbiol., 76, 3732, 10.1128/AEM.02794-09

Tashiro, 2012, Multifunctional membrane vesicles in Pseudomonas aeruginosa, Environ. Microbiol., 14, 1349, 10.1111/j.1462-2920.2011.02632.x

Davies, 1998, The involvement of cell-to-cell signals in the development of a bacterial biofilm, Science, 280, 295, 10.1126/science.280.5361.295

Boles, 2008, agr-Mediated dispersal of Staphylococcus aureus biofilms, PLoS Pathog., 4, e1000052, 10.1371/journal.ppat.1000052

Zhu, 2003, Quorum sensing-dependent biofilms enhance colonization in Vibrio cholera, Dev. Cell, 5, 647, 10.1016/S1534-5807(03)00295-8

de Kievit, 2009, Quorum sensing in Pseudomonas aeruginosa biofilms, Environ. Microbiol., 11, 279, 10.1111/emi.2009.11.issue-2

Toyofuku, 2012, Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix, J. Proteome Res., 11, 4906, 10.1021/pr300395j

Korber, 1989, The effect of laminar flow on the kinetics of surface recolonization by mott and mot- Pseudomonas fluorescens, Microb. Ecol., 18, 1, 10.1007/BF02011692

Lawrence, 1991, Optical sectioning of microbial biofilms, J. Bacteriol., 173, 6558, 10.1128/JB.173.20.6558-6567.1991

Palmer, 1999, Modern microscopy in biofilm research: confocal microscopy and other approaches, Curr. Opin. Biotechnol., 10, 263, 10.1016/S0958-1669(99)80046-9

Korber, 1999, Reporter systems for microscopic analysis of microbial biofilms, Methods Enzymol., 310, 3, 10.1016/S0076-6879(99)10003-X

McLean  RJ, Bates  CCL, Barnes  MB, McGowin  CL, Aron  GM. Methods of studying biofilms. In: Ghannoum  M, O’Tool  GA, editors. Microbial biofilms. Washington, DC: ASM Press; 2004. p. 379–413.

Yawata, 2010, Monitoring biofilm development in a microfluidic device using modified confocal reflection microscopy, J. Biosci. Bioeng., 110, 377, 10.1016/j.jbiosc.2010.04.002

Inaba, 2013, Three- dimensional visualization of mixed species biofilm formation together with its substratum, Microbiol. Immunol., 57, 589, 10.1111/mim.v57.8

Yawata, 2010, Visualizing the effects of biofilm structures on the influx of fluorescent material using combined confocal reflection and fluorescent microscopy, Microbes Environ., 25, 49, 10.1264/jsme2.ME09169

Zhu, 2007, Staphylococcus aureus biofilm metabolism and the influence of arginine on polysaccharide intercellular adhesin synthesis, biofilm formation, and pathogenesis, Infect. Immun., 75, 4219, 10.1128/IAI.00509-07

Rusconi, 2014, Microfluidics expanding the frontiers of microbial ecology, Annu. Rev. Biophys., 43, 65, 10.1146/annurev-biophys-051013-022916

Richter, 2007, Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics, Lab Chip, 7, 1723, 10.1039/b708236c

Toda, 2011, Continuous monitoring of ammonia removal activity and observation of morphology of microbial complexes in a microdevice, Appl. Environ. Microbiol., 77, 4253, 10.1128/AEM.01246-10

Yawata, 2010, Bacterial growth monitoring in a microfluidic device by confocal reflection microscopy, J. Biosci. Bioeng., 110, 130, 10.1016/j.jbiosc.2010.01.009

Kim, 2012, Microfluidic approaches to bacterial biofilm formation, Molecules, 17, 9818, 10.3390/molecules17089818

Wessel, 2013, Going local: technologies for exploring bacterial microenvironments, Nat. Rev. Microbiol., 11, 337, 10.1038/nrmicro3010

Elowitz, 2002, Stochastic gene expression in a single cell, Science, 297, 1183, 10.1126/science.1070919

Williamson, 2012, Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population, J. Bacteriol., 194, 2062, 10.1128/JB.00022-12

Vlamakis, 2008, Control of cell fate by the formation of an architecturally complex bacterial community, Genes Dev., 22, 945, 10.1101/gad.1645008

Lewis, 2007, Persister cells, dormancy and infectious disease, Nat. Rev. Microbiol., 5, 48, 10.1038/nrmicro1557