Environmental and genetic variation in T-cell-mediated immune response of fledgling American kestrels

Oecologia - Tập 123 - Trang 453-459 - 2000
J. L. Tella1, G. R. Bortolotti1, M. G. Forero1, R. D. Dawson1
1Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E2 e-mail: [email protected] Tel.:+1-306-9664439, Fax: +1-306-9664461, , CA

Tóm tắt

We investigated genetic and environmental components of variance in avian T-cell-mediated immune response (CMI) through a cross-fostering experiment conducted on wild American kestrels (Falco sparverius). CMI was evaluated in vivo by an experimental challenge with phytohaemagglutinin, a T-cell mitogen, injected intradermally in fledglings. Additionally, we assessed two measures of nutritional condition (body mass and circulating plasma proteins) which could influence the variance components of CMI. A two-way nested ANOVA indicated that CMI of fledgling kestrels was explained more by the nest where the bird was reared (33% of the explained variance) than by the nest of origin (12%). Body mass was explained equally by familial and environmental components, while plasma proteins were only related to the rearing environment. CMI of fledglings was not related to their circulating plasma proteins, but was positively correlated with their body mass. Fledgling body mass seemed to be influenced by pre-hatching or post-hatching maternal effects prior to manipulation since resemblance in body mass of sibships at the age of manipulation was high (h 2≤0.58), and body mass at this age predicted body mass at fledging. Therefore, pre-manipulation parental effects on body mass, such as investment in egg size, could have inflated the familial effects on body mass of fledglings and then on its correlated CMI. When controlling for body mass, most of the variation in CMI of fledglings was explained by the nest where the bird was reared (36.6%), while the variance explained by the nest of origin (4%) was not significant. This means that environmental influences are major determinants of offspring CMI. The low proportion of variance explained by the familial component may have been due to the high correlation of CMI to fitness.