Đánh giá môi trường và kinh tế trong sản xuất dầu thực vật bằng phương pháp phân tách màng và nén hơi

Springer Science and Business Media LLC - Tập 11 - Trang 166-176 - 2017
Weibin Kong1, Qi Miao1, Peiyong Qin1, Jan Baeyens2, Tianwei Tan1
1Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
2School of Engineering, University of Warwick, Coventry, UK

Tóm tắt

Quá trình chiết xuất dầu thô từ hạt dầu bằng dung môi được áp dụng rộng rãi do khả năng sản xuất cao và chi phí thấp. Trong quá trình này, việc phục hồi dung môi và xử lý khí thải thường được thực hiện bằng phương pháp hấp phụ, rửa parafin, hoặc thậm chí là cryogenics (ở mức lưu lượng khí thải thấp). Phân tách bằng màng, với mức tiêu thụ năng lượng thấp hơn các kỹ thuật này, cho phép một dải rộng các nồng độ và lưu lượng phù hợp, và cũng dễ dàng kết hợp với các kỹ thuật khác. Việc tái nén hơi có tiềm năng giảm thiểu thất thoát nhiệt liên quan đến chưng cất và bốc hơi. Trong nghiên cứu này, chúng tôi đã chứng minh khả năng kết hợp giữa phân tách bằng màng và tái nén hơi để cải thiện quy trình sản xuất dầu thực vật thông qua cả thí nghiệm và mô phỏng quy trình. Gần 73% năng lượng có thể được tiết kiệm trong quá trình chiết xuất dầu thực vật bằng phương pháp xử lý mới này. Qua đánh giá môi trường thêm, một số hạng mục tác động cho thấy quy trình tối ưu là bền vững về mặt môi trường.

Từ khóa

#chiết xuất dầu #hạt dầu #dung môi #phân tách bằng màng #tái nén hơi #sản xuất dầu thực vật

Tài liệu tham khảo

Vaskova H, Buckova M. Thermal degradation of vegetable oils: Spectroscopic measurement and analysis. Procedia Engineering, 2015, 100: 630–635 Alam M, Akram D, Sharmin E, Zafar F, Ahmad S. Vegetable oil based eco-friendly coating materials: A review article. Arabian Journal of Chemistry, 2014, 7(4): 469–479 Tomita K, Machmudah S, Wahyudiono, Fukuzato R, Kanda H, Quitain A T, Sasaki M, Goto M. Extraction of rice bran oil by supercritical carbon dioxide and solubility consideration. Separation and Purification Technology, 2014, 125: 319–325 Lin L, Ying D, Chaitep S, Vittayapadung S. Biodiesel production from crude rice bran oil and properties as fuel. Applied Energy, 2009, 86(5): 681–688 Manna M S, Bhatluri K K, Saha P, Ghoshal A K. Transportation of catechin (°C) using physiologically benign vegetable oil as liquid membrane. Industrial & Engineering Chemistry Research, 2012, 51(46): 15207–15216 Cerutti M L M N, de Souza A A U. Solvent extraction of vegetable oils: Numerical and experimental study. Food and Bioproducts Processing, 2012, 90(2): 199–204 Lau E V, Gan S, Ng H K. Extraction of phenanthrene andfluoranthene from contaminated sand using palm kernel and soybean oils. Journal of Environmental Management, 2012, 107: 124–130 Un U T, Koparal A S, Ogutveren U B. Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. Journal of Environmental Management, 2009, 90(1): 428–433 Peralta-Ruiz Y, González-Delgado A D, Kafarov V. Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Applied Energy, 2013, 101: 226–236 Carrín M E, Crapiste G H. Mathematical modeling of vegetable oil–solvent extraction in a multistage horizontal extractor. Journal of Food Engineering, 2008, 85(3): 418–425 Martinho A, Matos H A, Gani R, Sarup B, Youngreen W. Modelling and simulation of vegetable oil processes. Food and Bioproducts Processing, 2008, 86(2): 87–95 Lua A C, Shen Y. Preparation and characterization of polyimidesilica composite membranes and their derived carbon-silica composite membranes for gas separation. Chemical Engineering Journal, 2013, 220: 441–451 Bastani D, Esmaeili N, Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 375–393 Shen Y, Lua A C. Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chemical Engineering Journal, 2012, 192: 201–210 Degrève J, Everaert K, Baeyens J. The use of gas membranes for VOC-air separations. Filtration & Separation, 2001, 38(4): 49–54 García-Gonz M C, Vanotti M B, Szogi A A. Recovery of ammonia from swine manure using gas-permeable membranes: Effect of aeration. Journal of Environmental Management, 2015, 152: 19–26 Li M, Jiang X, He G. Application of membrane separation technology in postcombustion carbon dioxide capture process. Frontiers of Chemical Science and Engineering, 2014, 8(2): 233–239 Tan M, He G, Dai Y, Wang R, Shi W. Calculation on phase diagrams of polyetherimide/N,N-dimethylacetamide/H2O-BuOH casting system and their relevance to membrane performances. Frontiers of Chemical Science and Engineering, 2014, 8(3): 312–319 Li J, Zhong J, Huang W, Xu R, Zhang Q, Shao H, Gu X. Study on the development of ZIF-8 membranes for gasoline vapor recovery. Industrial & Engineering Chemistry Research, 2014, 53(9): 3662–3668 Waheed M A, Oni A O, Adejuyigbe S B, Adewumi B A, Fadare D A. Performance enhancement of vapor recompression heat pump. Applied Energy, 2014, 114: 69–79 Tuan C I, Yeh Y L, Chen C J, Chen T C. Performance assessment with Pinch technology and integrated heat pumps for vaporized concentration processing. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43(2): 226–234 Fu C, Gundersen T. Recuperative vapor recompression heat pumps in cryogenic air separation processes. Energy, 2013, 59: 708–718 Morales M, Dapsens P Y, Giovinazzo I, Witte J, Mondelli C, Papadokonstantakis S, Hungerbühler K, Pérez-Ramírez J. Environmental and economic assessment of lactic acid production from glycerol using cascade bio- and chemocatalysis. Energy & Environmental Science, 2015, 8(2): 558–567 Li S, Qin F, Qin P, Karim M N, Tan T. Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol-water mixture. Green Chemistry, 2013, 15(8): 2180–2190 Cai D, Zhang T, Zheng J, Chang Z, Wang Z, Qin P Y, Tan T W. Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process. Bioresource Technology, 2013, 145: 97–102 Kong W, Kang Q, Feng W, Tan T. Improving the solvent-extraction process of rice bran oil. Chemical Engineering Research & Design, 2015, 104: 1–10 Li B, He G, Jiang X, Dai Y, Ruan X. Pressure swing adsorption/ membrane hybrid processes for hydrogen purification with a high recovery. Frontiers of Chemical Science and Engineering, 2016, 10(2): 255–264 Thiel C L, Eckelman M, Guido R, Huddleston M, Landis A E, Sherman J, Shrake S O, Copley-Woods N, Bilec M M. Environmental impacts of surgical procedures: Life cycle assessment of hysterectomy in the United States. Environmental Science & Technology, 2015, 49(3): 1779–1786 Dominguez-Ramos A, Chavan K, García V, Jimeno G, Albo J, Marathe K V, Yadav G D, Irabien A. Arsenic removal from natural waters by adsorption or ion exchange: An environmental sustainability assessment. Industrial & Engineering Chemistry Research, 2014, 53(49): 18920–18927 Herrmann I T, Moltesen A. Does it matter which Life Cycle Assessment (LCA) tool you choose?—A comparative assessment of SimaPro and GaBi. Journal of Cleaner Production, 2015, 86: 163–169 Liu L, Chakma A, Feng X, Lawless D. Separation of VOCs from N2 using poly(ether block amide) membranes. Canadian Journal of Chemical Engineering, 2009, 87(3): 456–465