Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các yếu tố nguy cơ môi trường, yếu tố bảo vệ và dấu hiệu sinh học trong viêm mũi dị ứng: Một cuộc xem xét tổng hợp có hệ thống về bằng chứng
Tóm tắt
Nhiều yếu tố nguy cơ môi trường tiềm năng, yếu tố bảo vệ và dấu hiệu sinh học của viêm mũi dị ứng (AR) đã được công bố, nhưng cho đến nay, sức mạnh và độ nhất quán của bằng chứng vẫn chưa rõ ràng. Chúng tôi đã tiến hành một cuộc tổng quan toàn diện về nguy cơ môi trường, yếu tố bảo vệ và dấu hiệu sinh học cho AR nhằm thiết lập hệ thống phân loại bằng chứng. Chúng tôi đã tìm kiếm có hệ thống trong các cơ sở dữ liệu điện tử Embase, PubMed, Cochrane Library và Web of Science từ khi bắt đầu đến ngày 31 tháng 12 năm 2022. Chúng tôi đã tính toán ước lượng hiệu ứng tổng hợp (tỷ lệ odds (OR), nguy cơ tương đối (RR), tỷ lệ rủi ro (HR) và khác biệt trung bình chuẩn (SMD)), khoảng tin cậy 95%, giá trị p dưới tác động ngẫu nhiên, thống kê I2, khoảng dự đoán 95%, hiệu ứng từ các nghiên cứu nhỏ, và thiên lệch ý nghĩa vượt mức, cũng như phân tầng mức độ bằng chứng. Chất lượng phương pháp được đánh giá theo AMSTAR 2 (Công cụ Đo lường Để Đánh giá Các Đánh giá Hệ thống 2). Chúng tôi đã thu thập được 4478 bài báo, trong đó 43 bài đáp ứng tiêu chí bao gồm. 43 bài báo đủ điều kiện đã xác định 31 yếu tố nguy cơ môi trường tiềm năng (10.806.206 dân số tổng cộng, hai nghiên cứu không báo cáo), 11 yếu tố bảo vệ môi trường tiềm năng (823.883 dân số tổng cộng), và 34 dấu hiệu sinh học tiềm năng (158.716 dân số tổng cộng) cho các phân tích tổng hợp. Độ tin cậy của bằng chứng là thuyết phục (loại I) đối với rối loạn tic (OR = 2.89, 95% CI 2.11–3.95); và có tính gợi ý cao (loại II) đối với việc sử dụng kháng sinh trong giai đoạn đầu đời (OR = 3.73, 95% CI 3.06–4.55), tiếp xúc với độ ẩm trong nhà (OR = 1.49, 95% CI 1.27–1.75), tiếp xúc với acetaminophen (OR = 1.54, 95% CI 1.41–1.69), sử dụng thuốc ức chế acid ở trẻ em (OR = 1.40, 95% CI 1.23–1.59), tiếp xúc với nấm mốc trong nhà (OR = 1.66, 95% CI 1.26–2.18), bệnh coronavirus 2019 (OR = 0.11, 95% CI 0.06–0.22), và việc cho bú kéo dài (OR = 0.72, 95% CI 0.65–0.79). Nghiên cứu này đã được đăng ký tại PROSPERO (CRD42022384320).
Từ khóa
Tài liệu tham khảo
Bousquet J, Anto JM, Bachert C et al (2020) Allergic rhinitis. Nat Rev Dis Primers 6(1):95. https://doi.org/10.1038/s41572-020-00227-0
Allergic rhinitis (2020) Nat Rev Dis Primers 6(1):96. https://doi.org/10.1038/s41572-020-00237-y
Liebowitz A, Spielman DB, Schlosser RJ, Stewart MG, Gudis DA (2023) Demographic disparities in the federal drug approval process for allergic rhinitis medications. Laryngoscope 133(4):755–763. https://doi.org/10.1002/lary.30129
Wheatley LM, Togias A (2015) Clinical practice. Allergic rhinitis N Engl J Med 372(5):456–463. https://doi.org/10.1056/NEJMcp1412282
Leth-Møller KB, Skaaby T, Linneberg A (2020) Allergic rhinitis and allergic sensitisation are still increasing among Danish adults. Allergy 75(3):660–668. https://doi.org/10.1111/all.14046
Seidman MD, Gurgel RK, Lin SY et al (2015) Clinical practice guideline: allergic rhinitis. Otolaryngol Head Neck Surg 152(1 Suppl):S1–S43. https://doi.org/10.1177/0194599814561600
Meng Y, Wang C, Zhang L (2019) Recent developments and highlights in allergic rhinitis. Allergy 74(12):2320–2328. https://doi.org/10.1111/all.14067
Wang Y, Song XY, Wei SZ et al (2022) Brain response in allergic rhinitis: profile and proposal. J Neurosci Res. https://doi.org/10.1002/jnr.25159. (Published online ahead of print, 2022 Dec 23)
Khan DA (2014) Allergic rhinitis and asthma: epidemiology and common pathophysiology. Allergy Asthma Proc 35(5):357–361. https://doi.org/10.2500/aap.2014.35.3794
Leonardi A, Castegnaro A, Valerio AL, Lazzarini D (2015) Epidemiology of allergic conjunctivitis: clinical appearance and treatment patterns in a population-based study. Curr Opin Allergy Clin Immunol 15(5):482–488. https://doi.org/10.1097/ACI.0000000000000204
Wise SK, Lin SY, Toskala E et al (2018) International consensus statement on allergy and rhinology: allergic rhinitis. Int Forum Allergy Rhinol 8(2):108–352. https://doi.org/10.1002/alr.22073
Yavuz ST, Siebert S, Akin O, Arslan M, Civelek E, Bagci S (2018) Perinatal risk factors for asthma in children with allergic rhinitis and grass pollen sensitization. Allergy Asthma Proc 39(3):1–7. https://doi.org/10.2500/aap.2018.39.4122
Fu W, Zheng Z, Zhao J et al (2022) Allergic disease and sensitization disparity in urban and rural China: a EuroPrevall-INCO study. Pediatr Allergy Immunol 33(12):e13903. https://doi.org/10.1111/pai.13903
Yan Z, Liu L, Jiao L, Wen X, Liu J, Wang N (2020) Bioinformatics analysis and identification of underlying biomarkers potentially linking allergic rhinitis and asthma. Med Sci Monit 26:e924934. https://doi.org/10.12659/MSM.924934
Badorrek P, Müller M, Koch W, Hohlfeld JM, Krug N (2017) Specificity and reproducibility of nasal biomarkers in patients with allergic rhinitis after allergen challenge chamber exposure. Ann Allergy Asthma Immunol 118(3):290–297. https://doi.org/10.1016/j.anai.2017.01.018
Zhang Y, Lan F, Zhang L (2021) Advances and highlights in allergic rhinitis. Allergy 76(11):3383–3389. https://doi.org/10.1111/all.15044
Eifan AO, Durham SR (2016) Pathogenesis of rhinitis. Clin Exp Allergy 46(9):1139–1151. https://doi.org/10.1111/cea.12780
Hao Y, Wang B, Zhao J et al (2022) Identification of gene biomarkers with expression profiles in patients with allergic rhinitis. Allergy Asthma Clin Immunol 18(1):20. https://doi.org/10.1186/s13223-022-00656-4
Fox JW (2022) How much does the typical ecological meta-analysis overestimate the true mean effect size? Ecol Evol 12(11):e9521. https://doi.org/10.1002/ece3.9521
Pereira TV, Ioannidis JP (2011) Statistically significant meta-analyses of clinical trials have modest credibility and inflated effects. J Clin Epidemiol 64(10):1060–1069. https://doi.org/10.1016/j.jclinepi.2010.12.012
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71
WHO. Health topics: risk factors. http://www.who.int/topics/risk_factors/en/. Accessed 30 Oct 2019
WHO. WHO International Programme on Chemical Safety Biomarkers in Risk Assessment: validity and validation. http://www.inchem.org/documents/ehc/ehc/ehc222.htm. Accessed 30 Oct 2019
Shea BJ, Reeves BC, Wells G et al (2017) AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 358:j4008. https://doi.org/10.1136/bmj.j4008
Wongtrakul W, Charoenngam N, Ponvilawan B, Ungprasert P (2020) Allergic rhinitis and risk of systemic lupus erythematosus: a systematic review and meta-analysis. Int J Rheum Dis 23(11):1460–1467. https://doi.org/10.1111/1756-185X.13928
Belbasis L, Bellou V, Evangelou E, Ioannidis JP, Tzoulaki I (2015) Environmental risk factors and multiple sclerosis: an umbrella review of systematic reviews and meta-analyses. Lancet Neurol 14(3):263–273. https://doi.org/10.1016/S1474-4422(14)70267-4
Kim JY, Son MJ, Son CY et al (2019) Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry 6(7):590–600. https://doi.org/10.1016/S2215-0366(19)30181-6
Gosling CJ, Solanes A, Fusar-Poli P, Radua J (2022) metaumbrella: an R package for conducting umbrella reviews
DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188. https://doi.org/10.1016/0197-2456(86)90046-2
Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826. https://doi.org/10.7326/0003-4819-127-9-199711010-00008
DerSimonian R, Laird N (2015) Meta-analysis in clinical trials revisited. Contemp Clin Trials 45(Pt A):139–145. https://doi.org/10.1016/j.cct.2015.09.002
Sterne JA, Davey SG (2001) Sifting the evidence-what’s wrong with significance tests? BMJ 322(7280):226–231. https://doi.org/10.1136/bmj.322.7280.226
Ioannidis JP, Tarone R, McLaughlin JK (2011) The false-positive to false-negative ratio in epidemiologic studies. Epidemiology 22(4):450–456. https://doi.org/10.1097/EDE.0b013e31821b506e
Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10(1):101–129. https://doi.org/10.2307/3001666
Higgins JP, Thompson SG, Spiegelhalter DJ (2009) A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc 172(1):137–159. https://doi.org/10.1111/j.1467-985X.2008.00552.x
Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634. https://doi.org/10.1136/bmj.315.7109.629
Ioannidis JP, Trikalinos TA (2007) An exploratory test for an excess of significant findings. Clin Trials 4(3):245–253. https://doi.org/10.1177/1740774507079441
Bellou V, Belbasis L, Tzoulaki I, Evangelou E, Ioannidis JP (2016) Environmental risk factors and Parkinson’s disease: an umbrella review of meta-analyses. Parkinsonism Relat Disord 23:1–9. https://doi.org/10.1016/j.parkreldis.2015.12.008
Huang J, Li R, Li L, Song Y, Jin L (2022) The relationship between allergic diseases and tic disorders: a systematic review and meta-analysis. Neurosci Biobehav Rev 132:362–377. https://doi.org/10.1016/j.neubiorev.2021.12.004
Liu X, Wu R, Fu Y et al (2022) Meta-analysis of early-life antibiotic use and allergic rhinitis. Open Med (Wars) 17(1):1760–1772. https://doi.org/10.1515/med-2022-0459
Jaakkola MS, Quansah R, Hugg TT, Heikkinen SA, Jaakkola JJ (2013) Association of indoor dampness and molds with rhinitis risk: a systematic review and meta-analysis. J Allergy Clin Immunol 132(5):1099–1110.e18. https://doi.org/10.1016/j.jaci.2013.07.028
Hoang MP, Samuthpongtorn J, Seresirikachorn K, Snidvongs K (2022) Prolonged breastfeeding and protective effects against the development of allergic rhinitis: a systematic review and meta-analysis. Rhinology 60(2):82–91. https://doi.org/10.4193/Rhin21.274
Xu C, Zhao H, Song Y et al (2022) The association between allergic rhinitis and COVID-19: a systematic review and meta-analysis. Int J Clin Pract 2022:6510332. https://doi.org/10.1155/2022/6510332
Zeng Y, Song B, Gao Y et al (2020) Cumulative evidence for association of acetaminophen exposure and allergic rhinitis. Int Arch Allergy Immunol 181(6):422–433. https://doi.org/10.1159/000506807
Muhammad Danial Song HJJ, Min Lee CT, Ci Ng FY, Jyn Tan BK, Ho Siah KT, Tham EH (2023) Childhood acid suppressants may increase allergy risk-a systematic review and meta-analysis. J Allergy Clin Immunol Pract 11(1):228–237.e8. https://doi.org/10.1016/j.jaip.2022.09.042
Li S, Wu W, Wang G et al (2022) Association between exposure to air pollution and risk of allergic rhinitis: a systematic review and meta-analysis. Environ Res 205:112472. https://doi.org/10.1016/j.envres.2021.112472
Brick T, Hettinga K, Kirchner B, Pfaffl MW, Ege MJ (2020) The beneficial effect of farm milk consumption on asthma, allergies, and infections: from meta-analysis of evidence to clinical trial. J Allergy Clin Immunol Pract 8(3):878–889.e3. https://doi.org/10.1016/j.jaip.2019.11.017
Saulyte J, Regueira C, Montes-Martínez A, Khudyakov P, Takkouche B (2014) Active or passive exposure to tobacco smoking and allergic rhinitis, allergic dermatitis, and food allergy in adults and children: a systematic review and meta-analysis. PLoS Med 11(3):e1001611. https://doi.org/10.1371/journal.pmed.1001611
Ierodiakonou D, Garcia-Larsen V, Logan A et al (2016) Timing of allergenic food introduction to the infant diet and risk of allergic or autoimmune disease: a systematic review and meta-analysis. JAMA 316(11):1181–1192. https://doi.org/10.1001/jama.2016.12623
Lei WT, Hsu CW, Chen PC et al (2021) Increased risk of asthma and allergic rhinitis in patients with a past history of Kawasaki disease: a systematic review and meta-analyses. Front Pediatr 9:746856. https://doi.org/10.3389/fped.2021.746856
Chong SN, Chew FT (2018) Epidemiology of allergic rhinitis and associated risk factors in Asia. World Allergy Organ J 11(1):17. https://doi.org/10.1186/s40413-018-0198-z
Li X, Jing R, Feng S et al (2022) Association between prenatal or postpartum exposure to tobacco smoking and allergic rhinitis in the offspring: an updated meta-analysis of nine cohort studies. Tob Induc Dis 20:37. https://doi.org/10.18332/tid/146905
Alduraywish SA, Lodge CJ, Campbell B et al (2016) The march from early life food sensitization to allergic disease: a systematic review and meta-analyses of birth cohort studies. Allergy 71(1):77–89. https://doi.org/10.1111/all.12784
Aryan Z, Rezaei N, Camargo CA Jr (2017) Vitamin D status, aeroallergen sensitization, and allergic rhinitis: A systematic review and meta-analysis. Int Rev Immunol 36(1):41–53. https://doi.org/10.1080/08830185.2016.1272600
Cao Y, Wu S, Zhang L, Yang Y, Cao S, Li Q (2018) Association of allergic rhinitis with obstructive sleep apnea: a meta-analysis. Medicine (Baltimore) 97(51):e13783. https://doi.org/10.1097/MD.0000000000013783
Flanigan C, Sheikh A, DunnGalvin A, Brew BK, Almqvist C, Nwaru BI (2018) Prenatal maternal psychosocial stress and offspring’s asthma and allergic disease: a systematic review and meta-analysis. Clin Exp Allergy 48(4):403–414. https://doi.org/10.1111/cea.13091
Bai XF, Wu ZX, Zhao CH et al (2020) Maternal oral contraceptive pill use and the risk of atopic diseases in the offspring: a systematic review and meta-analysis. Medicine (Baltimore) 99(16):e19607. https://doi.org/10.1097/MD.0000000000019607
Bager P, Wohlfahrt J, Westergaard T (2008) Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy 38(4):634–642. https://doi.org/10.1111/j.1365-2222.2008.02939.x
Miyazaki C, Koyama M, Ota E et al (2017) Allergic diseases in children with attention deficit hyperactivity disorder: a systematic review and meta-analysis. BMC Psychiatry 17(1):120. https://doi.org/10.1186/s12888-017-1281-7
Gao X, Yin M, Yang P et al (2020) Effect of exposure to cats and dogs on the risk of asthma and allergic rhinitis: a systematic review and meta-analysis. Am J Rhinol Allergy 34(5):703–714. https://doi.org/10.1177/1945892420932487
Cao NW, Zhou HY, Du YJ, Li XB, Chu XJ, Li BZ (2023) The effect of greenness on allergic rhinitis outcomes in children and adolescents: A systematic review and meta-analysis. Sci Total Environ 859(Pt 1):160244. https://doi.org/10.1016/j.scitotenv.2022.160244
Zhang GQ, Liu B, Li J et al (2017) Fish intake during pregnancy or infancy and allergic outcomes in children: a systematic review and meta-analysis. Pediatr Allergy Immunol 28(2):152–161. https://doi.org/10.1111/pai.12648
Pacheco-González RM, García-Marcos L, Morales E (2018) Prenatal vitamin D status and respiratory and allergic outcomes in childhood: a meta-analysis of observational studies. Pediatr Allergy Immunol 29(3):243–253. https://doi.org/10.1111/pai.12876
Kuniyoshi Y, Tsujimoto Y, Banno M, Taito S, Ariie T (2021) Neonatal jaundice, phototherapy and childhood allergic diseases: an updated systematic review and meta-analysis. Pediatr Allergy Immunol 32(4):690–701. https://doi.org/10.1111/pai.13456
Cardwell CR, Shields MD, Carson DJ, Patterson CC (2003) A meta-analysis of the association between childhood type 1 diabetes and atopic disease. Diabetes Care 26(9):2568–2574. https://doi.org/10.2337/diacare.26.9.2568
Rodrigues MB, Carvalho DS, Chong-Silva DC et al (2022) Association between exposure to pesticides and allergic diseases in children and adolescents: a systematic review with meta-analysis. J Pediatr (Rio J) 98(6):551–564. https://doi.org/10.1016/j.jped.2021.10.007
Luo Y, Deji Z, Huang Z (2023) Exposure to perfluoroalkyl substances and allergic outcomes in children: a systematic review and meta-analysis. Environ Res 191:110145. https://doi.org/10.1016/j.envres.2020.110145
Monteiro L, Souza-Machado A, Menezes C, Melo A (2011) Association between allergies and multiple sclerosis: a systematic review and meta-analysis. Acta Neurol Scand 123(1):1–7. https://doi.org/10.1111/j.1600-0404.2010.01355.x
Fakunle AG, Jafta N, Naidoo RN, Smit LAM (2021) Association of indoor microbial aerosols with respiratory symptoms among under-five children: a systematic review and meta-analysis. Environ Health 20(1):77. https://doi.org/10.1186/s12940-021-00759-2
Müller-Vahl KR, Sambrani T, Jakubovski E (2019) Tic disorders revisited: introduction of the term “tic spectrum disorders.” Eur Child Adolesc Psychiatry 28(8):1129–1135. https://doi.org/10.1007/s00787-018-01272-7
Andrén P, Jakubovski E, Murphy TL et al (2022) European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part II: psychological interventions. Eur Child Adolesc Psychiatry 31(3):403–423. https://doi.org/10.1007/s00787-021-01845-z
Finegold I (1985) Allergy and Tourette’s syndrome. Ann Allergy 55:119–121
Chang YT, Li YF, Muo CH et al (2011) Correlation of Tourette syndrome and allergic disease: nationwide population-based case-control study. J Dev Behav Pediatr 32(2):98–102. https://doi.org/10.1097/DBP.0b013e318208f561
Dale RC (2017) Tics and Tourette: a clinical, pathophysiological and etiological review. Curr Opin Pediatr 29(6):665–673. https://doi.org/10.1097/MOP.0000000000000546
Huang AY, Yu D, Davis LK et al (2017) Rare copy number variants in NRXN1 and CNTN6 increase risk for Tourette syndrome. Neuron 94(6):1101–1111. https://doi.org/10.1016/j.neuron.2017.06.010
Keszler G, Kruk E, Kenezloi E, Tarnok Z, Sasvari-Szekely M, Nemoda Z (2014) Association of the tumor necrosis factor -308 A/G promoter polymorphism with Tourette syndrome. Int J Immunogenet 41(6):493–498. https://doi.org/10.1111/iji.12147
Tsai CS, Yang YH, Huang KY, Lee Y, McIntyre RS, Chen VC (2016) Association of tic disorders and enterovirus infection: a nationwide population-based study. Medicine (Baltimore) 95(15):e3347. https://doi.org/10.1097/MD.0000000000003347
Shayegan LH, Richards LE, Morel KD, Levin LE (2019) Punched-out erosions with scalloped borders: Group A Streptococcal pustulosis. Pediatr Dermatol 36(6):995–996. https://doi.org/10.1111/pde.13956
Müller N, Riedel M, Förderreuther S, Blendinger C, Abele-Horn M (2000) Tourette’s syndrome and mycoplasma pneumoniae infection. Am J Psychiatry 157(3):481–482. https://doi.org/10.1176/appi.ajp.157.3.481-a
Machowska A, Stålsby Lundborg C (2018) Drivers of irrational use of antibiotics in Europe. Int J Environ Res Public Health 16(1):27. https://doi.org/10.3390/ijerph16010027
Örtqvist AK, Lundholm C, Kieler H et al (2014) Antibiotics in fetal and early life and subsequent childhood asthma: nationwide population based study with sibling analysis. BMJ 349:g6979. https://doi.org/10.1136/bmj.g6979. (Published correction appears in BMJ. 2014;349:g7395)
Han YY, Forno E, Badellino HA, Celedón JC (2017) Antibiotic use in early life, rural residence, and allergic diseases in Argentinean children. J Allergy Clin Immunol Pract 5(4):1112–1118.e2. https://doi.org/10.1016/j.jaip.2016.12.025
Ni J, Friedman H, Boyd BC et al (2019) Early antibiotic exposure and development of asthma and allergic rhinitis in childhood. BMC Pediatr 19(1):225. https://doi.org/10.1186/s12887-019-1594-4
Fujimura KE, Lynch SV (2015) Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17(5):592–602. https://doi.org/10.1016/j.chom.2015.04.007
Pascal M, Perez-Gordo M, Caballero T et al (2018) Microbiome and allergic diseases. Front Immunol 9:1584. https://doi.org/10.3389/fimmu.2018.01584
Tonkin-Crine S, Walker AS, Butler CC (2015) Contribution of behavioural science to antibiotic stewardship. BMJ 350:h3413. https://doi.org/10.1136/bmj.h3413
Mitre E, Susi A, Kropp LE, Schwartz DJ, Gorman GH, Nylund CM (2018) Association between use of acid-suppressive medications and antibiotics during infancy and allergic diseases in early childhood. JAMA Pediatr 172(6):e180315. https://doi.org/10.1001/jamapediatrics.2018.0315
Untersmayr E, Jensen-Jarolim E (2008) The role of protein digestibility and antacids on food allergy outcomes. J Allergy Clin Immunol 121(6):1301–1310. https://doi.org/10.1016/j.jaci.2008.04.025
Marsland BJ, Salami O (2015) Microbiome influences on allergy in mice and humans. Curr Opin Immunol 36:94–100. https://doi.org/10.1016/j.coi.2015.07.005
Lynch SV, Boushey HA (2016) The microbiome and development of allergic disease. Curr Opin Allergy Clin Immunol 16(2):165–171. https://doi.org/10.1097/ACI.0000000000000255
Lu C, Norbäck D, Zhang Y et al (2020) Furry pet-related wheeze and rhinitis in pre-school children across China: associations with early life dampness and mould, furry pet keeping, outdoor temperature, PM10 and PM2.5. Environ Int 144:106033. https://doi.org/10.1016/j.envint.2020.106033
Wang J, Zhao Z, Zhang Y et al (2019) Asthma, allergic rhinitis and eczema among parents of preschool children in relation to climate, and dampness and mold in dwellings in China. Environ Int 130:104910. https://doi.org/10.1016/j.envint.2019.104910
Sahlberg B, Gunnbjörnsdottir M, Soon A et al (2013) Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three North European cities in relation to sick building syndrome (SBS). Sci Total Environ 444:433–440. https://doi.org/10.1016/j.scitotenv.2012.10.114
Norbäck D, Wieslander G, Nordström K, Wålinder R (2000) Asthma symptoms in relation to measured building dampness in upper concrete floor construction, and 2-ethyl-1-hexanol in indoor air. Int J Tuberc Lung Dis 4(11):1016–1025
Chiew AL, Gluud C, Brok J, Buckley NA (2018) Interventions for paracetamol (acetaminophen) overdose. Cochrane Database Syst Rev 2(2):CD003328. https://doi.org/10.1002/14651858.CD003328.pub3
Beasley RW, Clayton TO, Crane J et al (2011) Acetaminophen use and risk of asthma, rhinoconjunctivitis, and eczema in adolescents: international study of asthma and allergies in childhood phase three. Am J Respir Crit Care Med 183(2):171–178. https://doi.org/10.1164/rccm.201005-0757OC
Beasley R, Clayton T, Crane J et al (2008) Association between paracetamol use in infancy and childhood, and risk of asthma, rhinoconjunctivitis, and eczema in children aged 6–7 years: analysis from Phase Three of the ISAAC programme. Lancet 372(9643):1039–1048. https://doi.org/10.1016/S0140-6736(08)61445-2
Eyers S, Weatherall M, Jefferies S, Beasley R (2011) Paracetamol in pregnancy and the risk of wheezing in offspring: a systematic review and meta-analysis. Clin Exp Allergy 41(4):482–489. https://doi.org/10.1111/j.1365-2222.2010.03691.x
Allmers H (2005) Frequent acetaminophen use and allergic diseases: is the association clear? J Allergy Clin Immunol 116(4):859–862. https://doi.org/10.1016/j.jaci.2005.07.019
Caballero N, Welch KC, Carpenter PS, Mehrotra S, O’Connell TF, Foecking EM (2015) Association between chronic acetaminophen exposure and allergic rhinitis in a rat model. Allergy Rhinol (Providence) 6(3):162–167. https://doi.org/10.2500/ar.2015.6.0131
Lee MK, Binns C (2019) Breastfeeding and the risk of infant illness in Asia: a review. Int J Environ Res Public Health 17(1):186. https://doi.org/10.3390/ijerph17010186
Victora CG, Bahl R, Barros AJ et al (2016) Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387(10017):475–490. https://doi.org/10.1016/S0140-6736(15)01024-7
Francese R, Civra A, Donalisio M et al (2020) Anti-Zika virus and anti-Usutu virus activity of human milk and its components. PLoS Negl Trop Dis 14(10):e0008713. https://doi.org/10.1371/journal.pntd.0008713
Labayo HKM, Pajuelo MJ, Tohma K et al (2020) Norovirus-specific immunoglobulin A in breast milk for protection against norovirus-associated diarrhea among infants. EClinicalMedicine 27:100561. https://doi.org/10.1016/j.eclinm.2020.100561
Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352. https://doi.org/10.1038/nri.2016.42
Choi HG, Kong IG (2021) Asthma, allergic rhinitis, and atopic dermatitis incidence in Korean adolescents before and after COVID-19. J Clin Med 10(15):3446. https://doi.org/10.3390/jcm10153446
Dror AA, Eisenbach N, Marshak T et al (2020) Reduction of allergic rhinitis symptoms with face mask usage during the COVID-19 pandemic. J Allergy Clin Immunol Pract 8(10):3590–3593. https://doi.org/10.1016/j.jaip.2020.08.035
Cowling BJ, Ali ST, Ng TWY et al (2020) Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study. Lancet Public Health 5(5):e279–e288. https://doi.org/10.1016/S2468-2667(20)30090-6