Environmental Life Cycle Assessment of Hydrothermal Carbonization of Sewage Sludge and Its Products Valorization Pathways
Tóm tắt
This study is aimed at evaluating through Life Cycle Assessment (LCA) the environmental performances of an integrated system of an existing Water Resources Recovery Facility (WRRF) and a hypothetical hydrothermal carbonization (HTC) plant applied to the generated sewage sludge (SS). Beside the valorisation of the solid product (hydrochar, HC) as a fuel substituting lignite, the possibility to valorize also the liquid fraction (process water, PW) derived by the HTC, by anaerobic digestion to produce biogas, is here proposed and analysed. Additionally, phosphorus recovery from HC, prior its use, by acid leaching with nitric acid is also suggested and evaluated. Thus, four integrated scenarios, based on SS carbonization, are proposed and compared with the current SS treatment, based on composting outside of the WRRF (Benchmark scenario). The proposed scenarios, based on HTC, show improved performances with respect to the benchmark one, for thirteen of sixteen considered impact indicators. For the Climate Change (CC) indicator, the two HTC scenarios are able to reduce the impacts up to – 98%, with respect to the Benchmark. Further, the introduction of anaerobic digestion of PW proves to reduce impacts more than other configurations in eleven on sixteen impact categories. On the contrary, the introduction of phosphorus recovery process negatively affects the values for most of indicators. Thus, possible solutions to improve the integration of this process are outlined (e.g., the use of sulfuric acid instead of nitric one, or the application of a different ratio between solid and acidified solution during acid leaching of HC to recover phosphorus).
Tài liệu tham khảo
Langone, M., Basso, D.: Process waters from hydrothermal carbonization of sludge: Characteristics and possible valorization pathways. Int. J. Environ. Res. Public Health. 17, 1–31 (2020). https://doi.org/10.3390/ijerph17186618
Commission, E.: A Clean Planet for all. A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy. Com 773, 25 (2018)
Liu, B., Wei, Q., Zhang, B., Bi, J.: Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed. China. Sci. Total Environ. 447, 361–369 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.019
Libra, A.J., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.-M., Fuhner, C., Bens, O., Kern, J., Emmerich, K.-H.: Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and appolications of wet and dry pyrolysis. Biofuels 2, 89–124 (2011). https://doi.org/10.4155/bfs.10.81
Danso-Boateng, E., Shama, G., Wheatley, A.D., Martin, S.J., Holdich, R.G.: Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresour. Technol. 177, 318–327 (2015). https://doi.org/10.1016/j.biortech.2014.11.096
Wilk, M., Śliz, M., Lubieniecki, B.: Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar. Renew. Energy. 178, 1046–1056 (2021). https://doi.org/10.1016/j.renene.2021.06.101
Maniscalco, M.P., Volpe, M., Messineo, A.: Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. Energies (2020). https://doi.org/10.3390/en13164098
Aragón-briceño, C., Ross, A.B., Camargo-valero, M.A.: Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl. Energy. (2017). https://doi.org/10.1016/j.apenergy.2017.09.019
Wang, L., Chang, Y., Li, A.: Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sustain. Energy Rev. 108, 423–440 (2019). https://doi.org/10.1016/j.rser.2019.04.011
Czerwińska, K., Śliz, M., Wilk, M.: Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A Review. Renew. Sustain. Energy Rev. (2022). https://doi.org/10.1016/j.rser.2021.111873
Christensen, T.H., Damgaard, A., Levis, J., Zhao, Y., Björklund, A., Arena, U., Barlaz, M.A., Starostina, V., Boldrin, A., Astrup, T.F., Bisinella, V.: Application of LCA modelling in integrated waste management. Waste Manag. 118, 313–322 (2020). https://doi.org/10.1016/j.wasman.2020.08.034
Medina-Martos, E., Istrate, I.R., Villamil, J.A., Gálvez-Martos, J.L., Dufour, J., Mohedano, Á.F.: Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.122930
Berge, N.D., Li, L., Flora, J.R.V., Ro, K.S.: Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes. Waste Manag. 43, 203–217 (2015). https://doi.org/10.1016/j.wasman.2015.04.029
Gievers, F., Loewen, A., Nelles, M.: Hydrothermal Carbonization. GHG Emissions of Various Hydrochar Applications. Springer International Publishing, HTC) of Sewage Sludge (2019)
Wang, N.Y., Shih, C.H., Chiueh, P.T., Huang, Y.F.: Environmental effects of sewage sludge carbonization and other treatment alternatives. Energies 6, 871–883 (2013). https://doi.org/10.3390/en6020871
Meisel, K., Clemens, A., Fühner, C., Breulmann, M., Majer, S., Thrän, D.: Comparative life cycle assessment of HTC concepts valorizing sewage sludge for energetic and agricultural use. Energies (2019). https://doi.org/10.3390/en12050786
Bora, R.R., Lei, M., Tester, J.W., Lehmann, J., You, F.: Life Cycle assessment and technoeconomic analysis of thermochemical conversion technologies applied to poultry litter with energy and nutrient recovery. ACS Sustain. Chem. Eng. 8, 8436–8447 (2020). https://doi.org/10.1021/acssuschemeng.0c02860
Mendecka, B., Lombardi, L., Micali, F., De Risi, A.: Energy recovery from olive pomace by hydrothermal carbonization on hypothetical industrial scale: a LCA perspective. Waste and Biomass Valorization. 11, 5503–5519 (2020). https://doi.org/10.1007/s12649-020-01212-0
Zeymer, M., Meisel, K., Clemens, A., Klemm, M.: Technical, economic, and environmental assessment of the hydrothermal carbonization of green waste. Chem. Eng. Technol. 40, 260–269 (2017). https://doi.org/10.1002/ceat.201600233
Owsianiak, M., Ryberg, M.W., Renz, M., Hitzl, M., Hauschild, M.Z.: Environmental performance of hydrothermal carbonization of four wet biomass waste streams at industry-relevant scales. ACS Sustain. Chem. Eng. 4, 6783–6791 (2016). https://doi.org/10.1021/acssuschemeng.6b01732
European Commission: Communication from the Commission to the European Parliament, the Council, the Eurpean Economic and Social Committee and the Committee of the Regions on the 2017 list of Critical Raw Materials for the EU. Off. J. Eur. Union. COM, 8 (2017)
Marin-Batista, J.D., Mohedano, A.F., Rodríguez, J.J., de la Rubia, M.A.: Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge. Waste Manag. 105, 566–574 (2020). https://doi.org/10.1016/j.wasman.2020.03.004
Tasca, A.L., Mannarino, G., Gori, R., Vitolo, S., Puccini, M.: Phosphorus recovery from sewage sludge hydrochar: process optimization by response surface methodology. Water Sci. Technol. (2020). https://doi.org/10.2166/wst.2020.485
Oliver-Tomas, B., Hitzl, M., Owsianiak, M., Renz, M.: Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste. Resour. Conserv. Recycl. 147, 111–118 (2019). https://doi.org/10.1016/j.resconrec.2019.04.023
Evangelisti, S., Clift, R., Tagliaferri, C., Lettieri, P.: A life cycle assessment of distributed energy production from organic waste: Two case studies in Europe. Waste Manag. 64, 371–385 (2017). https://doi.org/10.1016/j.wasman.2017.03.028
Vadenbo, C., Hellweg, S., Astrup, T.F.: Let’s Be Clear(er) about substitution: a reporting framework to account for product displacement in life cycle assessment. J. Ind. Ecol. 21, 1078–1089 (2017). https://doi.org/10.1111/jiec.12519
Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B.: The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016). https://doi.org/10.1007/s11367-016-1087-8
Bolzonella, D., Innocenti, L., Cecchi, F.: Biological nutrient removal wastewater treatments and sewage sludge anaerobic mesophilic digestion performances. Water Sci. Technol. 46, 199–208 (2002). https://doi.org/10.2166/wst.2002.0330
Garrido-Baserba, M., Molinos-Senante, M., Abelleira-Pereira, J.M., Fdez-Güelfo, L.A., Poch, M., Hernández-Sancho, F.: Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems. J. Clean. Prod. 107, 410–419 (2015). https://doi.org/10.1016/j.jclepro.2014.11.021
Francini, G., Lombardi, L., Freire, F., Pecorini, I., Marques, P.: Environmental and cost life cycle analysis of different recovery processes of organic fraction of municipal solid waste and sewage sludge. Waste and Biomass Valorization. 10, 3613–3634 (2019). https://doi.org/10.1007/s12649-019-00687-w
Bakkaloglu, S., Lowry, D., Fisher, R.E., France, J.L., Brunner, D., Chen, H., Nisbet, E.G.: Quantification of methane emissions from UK biogas plants. Waste Manag. 124, 82–93 (2021). https://doi.org/10.1016/j.wasman.2021.01.011
Gogolek, P.: Methane emission factors for biogas flares. J. Int. Flame Res. Found. (2012). https://doi.org/10.1201/9781420039870.ch53
Teoh, S.K., Li, L.Y.: Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective. J. Clean. Prod. 247, 119495 (2020). https://doi.org/10.1016/j.jclepro.2019.119495
Evangelisti, S., Lettieri, P., Clift, R., Borello, D.: Distributed generation by energy from waste technology: A life cycle perspective. Process Saf. Environ. Prot. 93, 161–172 (2015). https://doi.org/10.1016/j.psep.2014.03.008
Hong, J., Hong, J., Otaki, M., Jolliet, O.: Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Manag. 29, 696–703 (2009). https://doi.org/10.1016/j.wasman.2008.03.026
Mannarino, G., (2022) Application of hydrothermal carbonization for sewage sludge and food waste valorization. Doctoral Thesis
Lucian, M., Volpe, M., Merzari, F., Wüst, D., Kruse, A., Andreottola, G., Fiori, L.: Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresour. Technol. 314, 123734 (2020). https://doi.org/10.1016/j.biortech.2020.123734
Lucian, M., Fiori, L.: Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis. Energies (2017). https://doi.org/10.3390/en10020211
Parmar, K.R., Ross, A.B.: Integration of hydrothermal carbonisation with anaerobic digestion; Opportunities for valorisation of digestate. Energies (2019). https://doi.org/10.3390/en12091586
Asunis, F., Gioannis, G.D., Francini, G., Lombardi, L., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., Spiga, D.: Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. Waste Manag. 132, 31–43 (2021). https://doi.org/10.1016/j.wasman.2021.07.010
Lombardi, L., Nocita, C., Bettazzi, E., Fibbi, D., Carnevale, E.: Environmental comparison of alternative treatments for sewage sludge: An Italian case study. Waste Manag. 69, 365–376 (2017). https://doi.org/10.1016/j.wasman.2017.08.040
Volpe, M., Fiori, L., Merzari, F., Messineo, A., Andreottola, G.: Hydrothermal carbonization as an efficient tool for sewage sludge valorization and phosphorous recovery. Chem. Eng. Trans. 80, 199–204 (2020). https://doi.org/10.3303/CET2080034
Pérez, C., François, J., Stina, B., Tomas, J., Jerker, G.: Acid - Induced Phosphorus Release from Hydrothermally Carbonized Sewage Sludge. Waste and Biomass Valorization. (2021). https://doi.org/10.1007/s12649-021-01463-5
Piccinno, F., Hischier, R., Seeger, S., Som, C.: From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 135, 1085–1097 (2016). https://doi.org/10.1016/j.jclepro.2016.06.164
Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F.: Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81, 577–583 (2010). https://doi.org/10.1016/j.chemosphere.2010.08.034
Sherrard, J.H.: Kinetics and stoichiometry of completely mixed activated sludge. J. Water Pollut. Control Fed. 49, 1968–1975 (1977)
Rigamonti, L., Falbo, A., Grosso, M.: Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation. Waste Manag. 33, 2568–2578 (2013). https://doi.org/10.1016/j.wasman.2013.07.016
European Commission: Recommendation 2013/179/EU on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. Off. J. Eur. Union. 210 (2013)
Tasca, A.L., Stefanelli, E., Raspolli Galletti, A.M., Gori, R., Mannarino, G., Vitolo, S., Puccini, M.: Hydrothermal carbonization of sewage sludge: analysis of process severity and solid content. Chem. Eng. Technol. 43, 2382–2392 (2020). https://doi.org/10.1002/ceat.202000095
Peng, C., Zhai, Y., Zhu, Y., Xu, B., Wang, T., Li, C., Zeng, G.: Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel 176, 110–118 (2016). https://doi.org/10.1016/j.fuel.2016.02.068
Wang, T., Zhai, Y., Zhu, Y., Peng, C., Xu, B., Wang, T., Li, C., Zeng, G.: Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Bioresour. Technol. 247, 182–189 (2018). https://doi.org/10.1016/j.biortech.2017.09.076
Aragón-Briceño, C.I., Grasham, O., Ross, A.B., Dupont, V., Camargo-Valero, M.A.: Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renew. Energy. 157, 959–973 (2020). https://doi.org/10.1016/j.renene.2020.05.021
Chemical Engineers’ Handbook (1942) Second edition (Perry, John H., ed.) J. Chem. Educ. https://doi.org/10.1021/ed019p449.2
Gerner, G., Meyer, L., Wanner, R., Keller, T., Krebs, R.: Sewage sludge treatment by hydrothermal carbonization: Feasibility study for sustainable nutrient recovery and fuel production. Energies (2021). https://doi.org/10.3390/en14092697