Environmental Life Cycle Assessment of Hydrothermal Carbonization of Sewage Sludge and Its Products Valorization Pathways

Waste and Biomass Valorization - Tập 13 - Trang 3845-3864 - 2022
G. Mannarino1, S. Caffaz2, R. Gori1, L. Lombardi3
1Department of Civil and Environmental Engineering, University of Florence, Florence, Italy
2Publiacqua SpA, Florence, Italy
3Niccolò Cusano University, Rome, Italy

Tóm tắt

This study is aimed at evaluating through Life Cycle Assessment (LCA) the environmental performances of an integrated system of an existing Water Resources Recovery Facility (WRRF) and a hypothetical hydrothermal carbonization (HTC) plant applied to the generated sewage sludge (SS). Beside the valorisation of the solid product (hydrochar, HC) as a fuel substituting lignite, the possibility to valorize also the liquid fraction (process water, PW) derived by the HTC, by anaerobic digestion to produce biogas, is here proposed and analysed. Additionally, phosphorus recovery from HC, prior its use, by acid leaching with nitric acid is also suggested and evaluated. Thus, four integrated scenarios, based on SS carbonization, are proposed and compared with the current SS treatment, based on composting outside of the WRRF (Benchmark scenario). The proposed scenarios, based on HTC, show improved performances with respect to the benchmark one, for thirteen of sixteen considered impact indicators. For the Climate Change (CC) indicator, the two HTC scenarios are able to reduce the impacts up to – 98%, with respect to the Benchmark. Further, the introduction of anaerobic digestion of PW proves to reduce impacts more than other configurations in eleven on sixteen impact categories. On the contrary, the introduction of phosphorus recovery process negatively affects the values for most of indicators. Thus, possible solutions to improve the integration of this process are outlined (e.g., the use of sulfuric acid instead of nitric one, or the application of a different ratio between solid and acidified solution during acid leaching of HC to recover phosphorus).

Tài liệu tham khảo

Langone, M., Basso, D.: Process waters from hydrothermal carbonization of sludge: Characteristics and possible valorization pathways. Int. J. Environ. Res. Public Health. 17, 1–31 (2020). https://doi.org/10.3390/ijerph17186618 Commission, E.: A Clean Planet for all. A European long-term strategic vision for a prosperous, modern, competitive and climate neutral economy. Com 773, 25 (2018) Liu, B., Wei, Q., Zhang, B., Bi, J.: Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed. China. Sci. Total Environ. 447, 361–369 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.019 Libra, A.J., Kammann, C., Funke, A., Berge, N.D., Neubauer, Y., Titirici, M.-M., Fuhner, C., Bens, O., Kern, J., Emmerich, K.-H.: Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and appolications of wet and dry pyrolysis. Biofuels 2, 89–124 (2011). https://doi.org/10.4155/bfs.10.81 Danso-Boateng, E., Shama, G., Wheatley, A.D., Martin, S.J., Holdich, R.G.: Hydrothermal carbonisation of sewage sludge: Effect of process conditions on product characteristics and methane production. Bioresour. Technol. 177, 318–327 (2015). https://doi.org/10.1016/j.biortech.2014.11.096 Wilk, M., Śliz, M., Lubieniecki, B.: Hydrothermal co-carbonization of sewage sludge and fuel additives: Combustion performance of hydrochar. Renew. Energy. 178, 1046–1056 (2021). https://doi.org/10.1016/j.renene.2021.06.101 Maniscalco, M.P., Volpe, M., Messineo, A.: Hydrothermal carbonization as a valuable tool for energy and environmental applications: A review. Energies (2020). https://doi.org/10.3390/en13164098 Aragón-briceño, C., Ross, A.B., Camargo-valero, M.A.: Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl. Energy. (2017). https://doi.org/10.1016/j.apenergy.2017.09.019 Wang, L., Chang, Y., Li, A.: Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renew. Sustain. Energy Rev. 108, 423–440 (2019). https://doi.org/10.1016/j.rser.2019.04.011 Czerwińska, K., Śliz, M., Wilk, M.: Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A Review. Renew. Sustain. Energy Rev. (2022). https://doi.org/10.1016/j.rser.2021.111873 Christensen, T.H., Damgaard, A., Levis, J., Zhao, Y., Björklund, A., Arena, U., Barlaz, M.A., Starostina, V., Boldrin, A., Astrup, T.F., Bisinella, V.: Application of LCA modelling in integrated waste management. Waste Manag. 118, 313–322 (2020). https://doi.org/10.1016/j.wasman.2020.08.034 Medina-Martos, E., Istrate, I.R., Villamil, J.A., Gálvez-Martos, J.L., Dufour, J., Mohedano, Á.F.: Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.122930 Berge, N.D., Li, L., Flora, J.R.V., Ro, K.S.: Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes. Waste Manag. 43, 203–217 (2015). https://doi.org/10.1016/j.wasman.2015.04.029 Gievers, F., Loewen, A., Nelles, M.: Hydrothermal Carbonization. GHG Emissions of Various Hydrochar Applications. Springer International Publishing, HTC) of Sewage Sludge (2019) Wang, N.Y., Shih, C.H., Chiueh, P.T., Huang, Y.F.: Environmental effects of sewage sludge carbonization and other treatment alternatives. Energies 6, 871–883 (2013). https://doi.org/10.3390/en6020871 Meisel, K., Clemens, A., Fühner, C., Breulmann, M., Majer, S., Thrän, D.: Comparative life cycle assessment of HTC concepts valorizing sewage sludge for energetic and agricultural use. Energies (2019). https://doi.org/10.3390/en12050786 Bora, R.R., Lei, M., Tester, J.W., Lehmann, J., You, F.: Life Cycle assessment and technoeconomic analysis of thermochemical conversion technologies applied to poultry litter with energy and nutrient recovery. ACS Sustain. Chem. Eng. 8, 8436–8447 (2020). https://doi.org/10.1021/acssuschemeng.0c02860 Mendecka, B., Lombardi, L., Micali, F., De Risi, A.: Energy recovery from olive pomace by hydrothermal carbonization on hypothetical industrial scale: a LCA perspective. Waste and Biomass Valorization. 11, 5503–5519 (2020). https://doi.org/10.1007/s12649-020-01212-0 Zeymer, M., Meisel, K., Clemens, A., Klemm, M.: Technical, economic, and environmental assessment of the hydrothermal carbonization of green waste. Chem. Eng. Technol. 40, 260–269 (2017). https://doi.org/10.1002/ceat.201600233 Owsianiak, M., Ryberg, M.W., Renz, M., Hitzl, M., Hauschild, M.Z.: Environmental performance of hydrothermal carbonization of four wet biomass waste streams at industry-relevant scales. ACS Sustain. Chem. Eng. 4, 6783–6791 (2016). https://doi.org/10.1021/acssuschemeng.6b01732 European Commission: Communication from the Commission to the European Parliament, the Council, the Eurpean Economic and Social Committee and the Committee of the Regions on the 2017 list of Critical Raw Materials for the EU. Off. J. Eur. Union. COM, 8 (2017) Marin-Batista, J.D., Mohedano, A.F., Rodríguez, J.J., de la Rubia, M.A.: Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge. Waste Manag. 105, 566–574 (2020). https://doi.org/10.1016/j.wasman.2020.03.004 Tasca, A.L., Mannarino, G., Gori, R., Vitolo, S., Puccini, M.: Phosphorus recovery from sewage sludge hydrochar: process optimization by response surface methodology. Water Sci. Technol. (2020). https://doi.org/10.2166/wst.2020.485 Oliver-Tomas, B., Hitzl, M., Owsianiak, M., Renz, M.: Evaluation of hydrothermal carbonization in urban mining for the recovery of phosphorus from the organic fraction of municipal solid waste. Resour. Conserv. Recycl. 147, 111–118 (2019). https://doi.org/10.1016/j.resconrec.2019.04.023 Evangelisti, S., Clift, R., Tagliaferri, C., Lettieri, P.: A life cycle assessment of distributed energy production from organic waste: Two case studies in Europe. Waste Manag. 64, 371–385 (2017). https://doi.org/10.1016/j.wasman.2017.03.028 Vadenbo, C., Hellweg, S., Astrup, T.F.: Let’s Be Clear(er) about substitution: a reporting framework to account for product displacement in life cycle assessment. J. Ind. Ecol. 21, 1078–1089 (2017). https://doi.org/10.1111/jiec.12519 Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B.: The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016). https://doi.org/10.1007/s11367-016-1087-8 Bolzonella, D., Innocenti, L., Cecchi, F.: Biological nutrient removal wastewater treatments and sewage sludge anaerobic mesophilic digestion performances. Water Sci. Technol. 46, 199–208 (2002). https://doi.org/10.2166/wst.2002.0330 Garrido-Baserba, M., Molinos-Senante, M., Abelleira-Pereira, J.M., Fdez-Güelfo, L.A., Poch, M., Hernández-Sancho, F.: Selecting sewage sludge treatment alternatives in modern wastewater treatment plants using environmental decision support systems. J. Clean. Prod. 107, 410–419 (2015). https://doi.org/10.1016/j.jclepro.2014.11.021 Francini, G., Lombardi, L., Freire, F., Pecorini, I., Marques, P.: Environmental and cost life cycle analysis of different recovery processes of organic fraction of municipal solid waste and sewage sludge. Waste and Biomass Valorization. 10, 3613–3634 (2019). https://doi.org/10.1007/s12649-019-00687-w Bakkaloglu, S., Lowry, D., Fisher, R.E., France, J.L., Brunner, D., Chen, H., Nisbet, E.G.: Quantification of methane emissions from UK biogas plants. Waste Manag. 124, 82–93 (2021). https://doi.org/10.1016/j.wasman.2021.01.011 Gogolek, P.: Methane emission factors for biogas flares. J. Int. Flame Res. Found. (2012). https://doi.org/10.1201/9781420039870.ch53 Teoh, S.K., Li, L.Y.: Feasibility of alternative sewage sludge treatment methods from a lifecycle assessment (LCA) perspective. J. Clean. Prod. 247, 119495 (2020). https://doi.org/10.1016/j.jclepro.2019.119495 Evangelisti, S., Lettieri, P., Clift, R., Borello, D.: Distributed generation by energy from waste technology: A life cycle perspective. Process Saf. Environ. Prot. 93, 161–172 (2015). https://doi.org/10.1016/j.psep.2014.03.008 Hong, J., Hong, J., Otaki, M., Jolliet, O.: Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Manag. 29, 696–703 (2009). https://doi.org/10.1016/j.wasman.2008.03.026 Mannarino, G., (2022) Application of hydrothermal carbonization for sewage sludge and food waste valorization. Doctoral Thesis Lucian, M., Volpe, M., Merzari, F., Wüst, D., Kruse, A., Andreottola, G., Fiori, L.: Hydrothermal carbonization coupled with anaerobic digestion for the valorization of the organic fraction of municipal solid waste. Bioresour. Technol. 314, 123734 (2020). https://doi.org/10.1016/j.biortech.2020.123734 Lucian, M., Fiori, L.: Hydrothermal carbonization of waste biomass: Process design, modeling, energy efficiency and cost analysis. Energies (2017). https://doi.org/10.3390/en10020211 Parmar, K.R., Ross, A.B.: Integration of hydrothermal carbonisation with anaerobic digestion; Opportunities for valorisation of digestate. Energies (2019). https://doi.org/10.3390/en12091586 Asunis, F., Gioannis, G.D., Francini, G., Lombardi, L., Muntoni, A., Polettini, A., Pomi, R., Rossi, A., Spiga, D.: Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. Waste Manag. 132, 31–43 (2021). https://doi.org/10.1016/j.wasman.2021.07.010 Lombardi, L., Nocita, C., Bettazzi, E., Fibbi, D., Carnevale, E.: Environmental comparison of alternative treatments for sewage sludge: An Italian case study. Waste Manag. 69, 365–376 (2017). https://doi.org/10.1016/j.wasman.2017.08.040 Volpe, M., Fiori, L., Merzari, F., Messineo, A., Andreottola, G.: Hydrothermal carbonization as an efficient tool for sewage sludge valorization and phosphorous recovery. Chem. Eng. Trans. 80, 199–204 (2020). https://doi.org/10.3303/CET2080034 Pérez, C., François, J., Stina, B., Tomas, J., Jerker, G.: Acid - Induced Phosphorus Release from Hydrothermally Carbonized Sewage Sludge. Waste and Biomass Valorization. (2021). https://doi.org/10.1007/s12649-021-01463-5 Piccinno, F., Hischier, R., Seeger, S., Som, C.: From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 135, 1085–1097 (2016). https://doi.org/10.1016/j.jclepro.2016.06.164 Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F.: Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81, 577–583 (2010). https://doi.org/10.1016/j.chemosphere.2010.08.034 Sherrard, J.H.: Kinetics and stoichiometry of completely mixed activated sludge. J. Water Pollut. Control Fed. 49, 1968–1975 (1977) Rigamonti, L., Falbo, A., Grosso, M.: Improvement actions in waste management systems at the provincial scale based on a life cycle assessment evaluation. Waste Manag. 33, 2568–2578 (2013). https://doi.org/10.1016/j.wasman.2013.07.016 European Commission: Recommendation 2013/179/EU on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations. Off. J. Eur. Union. 210 (2013) Tasca, A.L., Stefanelli, E., Raspolli Galletti, A.M., Gori, R., Mannarino, G., Vitolo, S., Puccini, M.: Hydrothermal carbonization of sewage sludge: analysis of process severity and solid content. Chem. Eng. Technol. 43, 2382–2392 (2020). https://doi.org/10.1002/ceat.202000095 Peng, C., Zhai, Y., Zhu, Y., Xu, B., Wang, T., Li, C., Zeng, G.: Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel 176, 110–118 (2016). https://doi.org/10.1016/j.fuel.2016.02.068 Wang, T., Zhai, Y., Zhu, Y., Peng, C., Xu, B., Wang, T., Li, C., Zeng, G.: Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Bioresour. Technol. 247, 182–189 (2018). https://doi.org/10.1016/j.biortech.2017.09.076 Aragón-Briceño, C.I., Grasham, O., Ross, A.B., Dupont, V., Camargo-Valero, M.A.: Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renew. Energy. 157, 959–973 (2020). https://doi.org/10.1016/j.renene.2020.05.021 Chemical Engineers’ Handbook (1942) Second edition (Perry, John H., ed.) J. Chem. Educ. https://doi.org/10.1021/ed019p449.2 Gerner, G., Meyer, L., Wanner, R., Keller, T., Krebs, R.: Sewage sludge treatment by hydrothermal carbonization: Feasibility study for sustainable nutrient recovery and fuel production. Energies (2021). https://doi.org/10.3390/en14092697