Environment and Host Genetics Influence the Biogeography of Plant Microbiome Structure
Tóm tắt
To understand how microbiota influence plant populations in nature, it is important to examine the biogeographic distribution of plant-associated microbiomes and the underlying mechanisms. However, we currently lack a fundamental understanding of the biogeography of plant microbiomes across populations and the environmental and host genetic factors that shape their distribution. Leveraging the broad distribution and extensive genetic variation in duckweeds (the Lemna species complex), we identified key factors that governed plant microbiome diversity and compositional variation geographically. In line with the microbial biogeography of free-living microbiomes, we observed higher bacterial richness in temperate regions relative to lower latitudes in duckweed microbiomes (with 10% higher in temperate populations). Our analyses revealed that higher temperature and sodium concentration in aquatic environments showed a negative impact on duckweed bacterial richness, whereas temperature, precipitation, pH, and concentrations of phosphorus and calcium, along with duckweed genetic variation, influenced the biogeographic variation of duckweed bacterial community composition. Analyses of plant microbiome assembly processes further revealed that niche-based selection played an important role (26%) in driving the biogeographic variation of duckweed bacterial communities, alongside the contributions of dispersal limitation (33%) and drift (39%). These findings add significantly to our understanding of host-associated microbial biogeography and provide important insights for predicting plant microbiome vulnerability and resilience under changing climates and intensifying anthropogenic activities.
Tài liệu tham khảo
Laforest-Lapointe I, Paquette A, Messier C, Kembel SW (2017) Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546:145–147. https://doi.org/10.1038/nature22399
Tan J, Wei N, Turcotte M (2023) Trophic interactions in microbiomes influence plant host population size and ecosystem function. bioRxiv. https://doi.org/10.1101/2023.03.06.531362
Härer A, Rennison DJ (2023) The biogeography of host-associated bacterial microbiomes: Revisiting classic biodiversity patterns. Global Ecol Biogeogr 32:931–944. https://doi.org/10.1111/geb.13675
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L-d, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688
Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, d’Ovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos BT, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas SG, Bork P, Boss E, Bowler C, Follows M, Karp-Boss L, Krzic U, Reynaud EG, Sardet C, Sieracki M, Velayoudon D (2015) Structure and function of the global ocean microbiome. Science 348:1261359. https://doi.org/10.1126/science.1261359
Zhao J, Jin L, Wu D, Xie JW, Li J, Fu XW, Cong ZY, Fu PQ, Zhang Y, Luo XS, Feng XB, Zhang G, Tiedje JM, Li XD (2022) Global airborne bacterial community-interactions with Earth’s microbiomes and anthropogenic activities. Proc Natl Acad Sci USA 119:e2204465119. https://doi.org/10.1073/pnas.2204465119
Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, Bengtsson-Palme J, Anslan S, Coelho LP, Harend H, Huerta-Cepas J, Medema MH, Maltz MR, Mundra S, Olsson PA, Pent M, Põlme S, Sunagawa S, Ryberg M, Tedersoo L, Bork P (2018) Structure and function of the global topsoil microbiome. Nature 560:233–237. https://doi.org/10.1038/s41586-018-0386-6
Ibarbalz FM, Henry N, Brandao MC, Martini S, Busseni G, Byrne H, Coelho LP, Endo H, Gasol JM, Gregory AC, Mahe F, Rigonato J, Royo-Llonch M, Salazar G, Sanz-Saez I, Scalco E, Soviadan D, Zayed AA, Zingone A, Labadie K, Ferland J, Marec C, Kandels S, Picheral M, Dimier C, Poulain J, Pisarev S, Carmichael M, Pesant S, Tara Oceans C, Babin M, Boss E, Iudicone D, Jaillon O, Acinas SG, Ogata H, Pelletier E, Stemmann L, Sullivan MB, Sunagawa S, Bopp L, de Vargas C, Karp-Boss L, Wincker P, Lombard F, Bowler C, Zinger L (2019) Global trends in marine plankton diversity across kingdoms of life. Cell 179:1084–1097. https://doi.org/10.1016/j.cell.2019.10.008
Dickey JR, Swenie RA, Turner SC, Winfrey CC, Yaffar D, Padukone A, Beals KK, Sheldon KS, Kivlin SN (2021) The utility of macroecological rules for microbial biogeography. Front Ecol Evol 9:633155. https://doi.org/10.3389/fevo.2021.633155
Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots? Ecology 88:541–549. https://doi.org/10.1890/05-1459
Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303. https://doi.org/10.1016/j.soilbio.2011.07.012
Tedersoo L, Bahram M, Toots M, Diedhiou AG, Henkel TW, Kjoller R, Morris MH, Nara K, Nouhra E, Peay KG, Polme S, Ryberg M, Smith ME, Koljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21:4160–4170. https://doi.org/10.1111/j.1365-294X.2012.05602.x
Meiser A, Balint M, Schmitt I (2014) Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytol 201:623–635. https://doi.org/10.1111/nph.12532
Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge
Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309. https://doi.org/10.1146/annurev.ecolsys.34.012103.144032
Chu H, Gao G-F, Ma Y, Fan K, Delgado-Baquerizo M (2020) Soil microbial biogeography in a changing world: Recent advances and future perspectives. mSystems 5:e00803-00819. https://doi.org/10.1128/mSystems.00803-19
Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631. https://doi.org/10.1073/pnas.0507535103
Wei N, Ashman T-L (2018) The effects of host species and sexual dimorphism differ among root, leaf and flower microbiomes of wild strawberries in situ. Sci Rep 8:5195. https://doi.org/10.1038/s41598-018-23518-9
Wei N, Whyle RL, Ashman T-L, Jamieson MA (2022) Genotypic variation in floral volatiles influences floral microbiome more strongly than interactions with herbivores and mycorrhizae in strawberries. Hortic Res 9:uhab005. https://doi.org/10.1093/hr/uhab005
Shakir S, Zaidi SS, de Vries FT, Mansoor S (2021) Plant genetic networks shaping phyllosphere microbial community. Trends Genet 37:306–316. https://doi.org/10.1016/j.tig.2020.09.010
Yan ZZ, Chen QL, Li CY, Thi Nguyen BA, He JZ, Hu HW (2021) Contrasting ecological processes shape the Eucalyptus phyllosphere bacterial and fungal community assemblies. J Sustain Agric Environ 1:73–83. https://doi.org/10.1002/sae2.12007
Wood G, Steinberg PD, Campbell AH, Verges A, Coleman MA, Marzinelli EM (2022) Host genetics, phenotype and geography structure the microbiome of a foundational seaweed. Mol Ecol 31:2189–2206. https://doi.org/10.1111/mec.16378
Vellend BM (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206. https://doi.org/10.1086/652373
Mittelbach GG, Schemske DW (2015) Ecological and evolutionary perspectives on community assembly. Trends Ecol Evol 30:241–247. https://doi.org/10.1016/j.tree.2015.02.008
Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. https://doi.org/10.1038/ismej.2013.93
Ning D, Yuan M, Wu L, Zhang Y, Guo X, Zhou X, Yang Y, Arkin AP, Firestone MK, Zhou J (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat Commun 11:4717. https://doi.org/10.1038/s41467-020-18560-z
Braglia L, Breviario D, Giani S, Gavazzi F, De Gregori J, Morello L (2021) New insights into interspecific hybridization in Lemna L. Sect. Lemna (Lemnaceae Martinov). Plants 10:2767. https://doi.org/10.3390/plants10122767
Landolt E (1986) The family of Lemnaceae–a monographic study, Vol. 1: Morphology, karyology, ecology, geographic distribution, systematic position, nomenclature, descriptions. Veroffentlichungen des Geobotanischen Institutes der Eidgenossischen Technischen Hochschule, Stiftung Rubel, Zurich
Cao HX, Fourounjian P, Wang W (2018) The importance and potential of duckweeds as a model and crop plant for biomass-based applications and beyond. In: Hussain, CM (ed.) Handbook of environmental materials management. Springer International Publishing, pp 1–16. https://doi.org/10.1007/978-3-319-58538-367-1
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E (2021) Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. Plant Cell 33:3207–3234. https://doi.org/10.1093/plcell/koab189
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869
R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 20 Nov 2022
Wei N, Russell AL, Jarrett AR, Ashman T-L (2021) Pollinators mediate floral microbial diversity and microbial network under agrochemical disturbance. Mol Ecol 30:2235–2247. https://doi.org/10.1111/mec.15890
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. Plos One 8:e61217. https://doi.org/10.1371/journal.pone.0061217
Hsieh TC, Ma KH, Chao A (2020) iNEXT: iNterpolation and EXTrapolation for species diversity. R package version 2.0.20. http://chao.stat.nthu.edu.tw/wordpress/software-download/. Accessed 20 Nov 2022
Heras J, Domínguez C, Mata E, Pascual V, Lozano C, Torres C, Zarazaga M (2015) GelJ – a tool for analyzing DNA fingerprint gel images. BMC Bioinform 16:270. https://doi.org/10.1186/s12859-015-0703-0
Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1093/genetics/155.2.945
Francis RM (2017) pophelper: an R package and web app to analyse and visualize population structure. Mol Ecol Resour 17:27–32. https://doi.org/10.1111/1755-0998.12509
Bates D, Machler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01
Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Helene W (2022) vegan: Community Ecology Package. R package version 2.6–4. https://CRAN.R-project.org/package=vegan. Accessed 20 Nov 2022
Padgham M (2021) geodist: Fast, Dependency-Free Geodesic Distance Calculations: R package version 0.0.7. https://github.com/hypertidy/geodist. Accessed 20 Nov 2022
Acosta K, Xu J, Gilbert S, Denison E, Brinkman T, Lebeis S, Lam E (2020) Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. Plos One 15:e0228560. https://doi.org/10.1371/journal.pone.0228560
Fahimipour AK, Kardish MR, Lang JM, Green JL, Eisen JA, Stachowicz JJ (2017) Global-scale structure of the eelgrass microbiome. Appl Environ Microbiol 83:e03391–16. https://doi.org/10.1128/AEM.03391-16
Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y, Liu X, Fan G, Tang J, Coletta-Filho HD, Cubero J, Deng X, Ancona V, Lu Z, Zhong B, Roper MC, Capote N, Catara V, Pietersen G, Verniere C, Al-Sadi AM, Li L, Yang F, Xu X, Wang J, Yang H, Jin T, Wang N (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9:4894. https://doi.org/10.1038/s41467-018-07343-2
Barge EG, Leopold DR, Peay KG, Newcombe G, Busby PE (2019) Differentiating spatial from environmental effects on foliar fungal communities of Populus trichocarpa. J Biogeogr 46:2001–2011. https://doi.org/10.1111/jbi.13641
Thiergart T, Duran P, Ellis T, Vannier N, Garrido-Oter R, Kemen E, Roux F, Alonso-Blanco C, Agren J, Schulze-Lefert P, Hacquard S (2020) Root microbiota assembly and adaptive differentiation among European Arabidopsis populations. Nat Ecol Evol 4:122–131. https://doi.org/10.1038/s41559-019-1063-3
Rudgers JA, Fox S, Porras-Alfaro A, Herrera J, Reazin C, Kent DR, Souza L, Chung YA, Jumpponen A (2021) Biogeography of root-associated fungi in foundation grasses of North American plains. J Biogeogr 49:22–37. https://doi.org/10.1111/jbi.14260
Zhang B, Zhang J, Liu Y, Guo Y, Shi P, Wei G (2018) Biogeography and ecological processes affecting root-associated bacterial communities in soybean fields across China. Sci Total Environ 627:20–27. https://doi.org/10.1016/j.scitotenv.2018.01.230
Chen L, Hu BX, Dai H, Zhang X, Xia CA, Zhang J (2019) Characterizing microbial diversity and community composition of groundwater in a salt-freshwater transition zone. Sci Total Environ 678:574–584. https://doi.org/10.1016/j.scitotenv.2019.05.017
DeVilbiss SE, Steele MK, Brown BL, Badgley BD (2022) Stream bacterial diversity peaks at intermediate freshwater salinity and varies by salt type. Sci Total Environ 840:156690. https://doi.org/10.1016/j.scitotenv.2022.156690
O’Brien AM, Yu ZH, Luo DY, Laurich J, Passeport E, Frederickson ME (2020) Resilience to multiple stressors in an aquatic plant and its microbiome. Am J Bot 107:273–285. https://doi.org/10.1002/ajb2.1404
Sree KS, Adelmann K, Garcia C, Lam E, Appenroth KJ (2015) Natural variance in salt tolerance and induction of starch accumulation in duckweeds. Planta 241:1395–1404. https://doi.org/10.1007/s00425-015-2264-x
Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, Band LE, Fisher GT (2005) Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci USA 102:13517–13520. https://doi.org/10.1073/pnas.0506414102
Hintz WD, Arnott SE, Symons CC, Greco DA, McClymont A, Brentrup JA, Canedo-Arguelles M, Derry AM, Downing AL, Gray DK, Melles SJ, Relyea RA, Rusak JA, Searle CL, Astorg L, Baker HK, Beisner BE, Cottingham KL, Ersoy Z, Espinosa C, Franceschini J, Giorgio AT, Gobeler N, Hassal E, Hebert MP, Huynh M, Hylander S, Jonasen KL, Kirkwood AE, Langenheder S, Langvall O, Laudon H, Lind L, Lundgren M, Proia L, Schuler MS, Shurin JB, Steiner CF, Striebel M, Thibodeau S, Urrutia-Cordero P, Vendrell-Puigmitja L, Weyhenmeyer GA (2022) Current water quality guidelines across North America and Europe do not protect lakes from salinization. Proc Natl Acad Sci USA 119:e2115033119. https://doi.org/10.1073/pnas.2115033119
Jackson LP, Jevrejeva S (2016) A probabilistic approach to 21st century regional sea-level projections using RCP and high-end scenarios. Global Planet Change 146:179–189. https://doi.org/10.1016/j.gloplacha.2016.10.006
Dangendorf S, Marcos M, Wöppelmann G, Conrad CP, Frederikse T, Riva R (2017) Reassessment of 20th century global mean sea level rise. Proc Natl Acad Sci USA 114:5946–5951. https://doi.org/10.1073/pnas.1616007114
IPCC (2022) Climate change 2022: Mitigation of climate change. Contribution of working group iii to the sixth assessment report of the intergovernmental panel on climate change. In: Shukla, PR, Skea, J, Slade, R, Al Khourdajie, A, Van Diemen, R, McCollum, D, Pathak, M, Some, S, Vyas, P, Fradera, R (eds.). Cambridge University Press, Cambridge, UK and New York, NY, USA. https://doi.org/10.1017/9781009157926
Calicioglu O, Shreve MJ, Richard TL, Brennan RA (2018) Effect of pH and temperature on microbial community structure and carboxylic acid yield during the acidogenic digestion of duckweed. Biotechnol Biofuels 11:275. https://doi.org/10.1186/s13068-018-1278-6
Hudson JJ, Taylor WD, Schindler DW (2000) Phosphate concentrations in lakes. Nature 406:54–56. https://doi.org/10.1038/35017531
Martin K, Schmidt K, Toseland A, Boulton CA, Barry K, Beszteri B, Brussaard CPD, Clum A, Daum CG, Eloe-Fadrosh E, Fong A, Foster B, Foster B, Ginzburg M, Huntemann M, Ivanova NN, Kyrpides NC, Lindquist E, Mukherjee S, Palaniappan K, Reddy TBK, Rizkallah MR, Roux S, Timmermans K, Tringe SG, van de Poll WH, Varghese N, Valentin KU, Lenton TM, Grigoriev IV, Leggett RM, Moulton V, Mock T (2021) The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat Commun 12:5483. https://doi.org/10.1038/s41467-021-25646-9
Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208. https://doi.org/10.1073/pnas.0810193105
Tipping E, Benham S, Boyle JF, Crow P, Davies J, Fischer U, Guyatt H, Helliwell R, Jackson-Blake L, Lawlor AJ, Monteith DT, Rowe EC, Toberman H (2014) Atmospheric deposition of phosphorus to land and freshwater. Environ Sci Process Impacts 16:1608–1617. https://doi.org/10.1039/C3EM00641G
Leimu R, Fischer M (2008) A meta-analysis of local adaptation in plants. Plos One 3:e4010. https://doi.org/10.1371/journal.pone.0004010