Entropy solutions for a nonlinear parabolic problems with lower order term in Orlicz spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, R.: Sobolev spaces. Academic Press, New York (1975)
Azroul, E., Redwane, H., Rhoudaf, M.: Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz Spaces. Port. Math. 66(1), 29–63 (2009)
Ben Cheikh Ali, M., Guibé, O.: Nonlinear and non-coercive elliptic problems with integrable data (English summary). Adv. Math. Sci. Appl. 16(1), 275–297 (2006)
Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vazquez, J.-L.: An $$L^1$$ L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa 22, 241–273 (1995)
Boccardo, L., Dall’Aglio, A., Gallouët, T., Orsina, L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 87, 49–169 (1989)
Boccardo, L., Gallouët, T.: On some nonlinear elliptic equations with right-hand side measures. Commun. Partial Differ. Equ. 17, 641–655 (1992)
Boccardo, L., Giachetti, D., Diaz, J.-I., Murat, F.: Existence and regularity of renormalized solutions for some elliptic problems involving derivation of nonlinear terms. J. Differ. Equ. 106, 215–237 (1993)
Dall’Aglio, A., Orsina, L.: Nonlinear parabolic equations with natural growth conditions and $$L^1$$ L 1 data. Nonlinear Anal. 27, 59–73 (1996)
Di Nardo, R., Feo F., Guibé, O.: Existence result for nonlinear parabolic equations with lower order terms. Anal. Appl. (Singap.) 9(2), 161–186 (2011) [35K92 (35K20)]
DiPerna, R.-J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130, 321–366 (1989)
Elmahi, A., Meskine, D.: Parabolic initial-boundary value problems in Orlicz spaces. Ann. Polon. Math. 85, 99–119 (2005)
Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Anal. Theory Methods Appl. 60, 1–35 (2005)
Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms and $$L^1$$ L 1 data in Orlicz spaces. Portugaliae Mathematica. Nova 62, 143–183 (2005)
Gossez, J.-P., Mustonen, V.: Variational inequalities in Orlics-spaces. Nonlinear Anal. 11, 379–492 (1987)
Gossez, J.-P.: Nonlinear elliptic boundary value problems for equation with rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 190, 217–237 (1974)
Gossez, J.-P.: Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)
Hadj Nassar, S., Moussa, H., Rhoudaf, M.: Renormalized solution for a nonlinear parabolic problems with noncoercivity in divergence form in Orlicz spaces. Appl. Math. Comput. 249, 253–264 (2014)
Krasnosel’skii, M., Rutickii,Ya.: Convex functions and Orlicz spaces, Noordhoff, Groningen (1969)
Kufner, A., John,O., Fučik,S.: Function spaces function spaces. In: Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Leyden; Academia, Praha (1977)
Landes, R.: On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc. R. Soc. Edinb. Sect. A 89, 217–237 (1981)
Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaire. Dunod et Gauthier-Villars, Paris (1969)
Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 1: Incompressible Models. Oxford Univ. Press, Oxford (1996)
Murat, F.: Soluciones renormalizadas de EDP elipticas non lineales, Cours à l’Université de Séville, Publication R93023. Laboratoire d’Analyse Numérique, Paris VI (1993)
Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
Porretta, A.: Existence results for strongly nonlinear parabolic equations via strong convergence of truncations. Ann. Mat. Pura Appl. (IV) 177, 143–172 (1999)
Rajagopal, K.R., Ru̇žička, M.: Mathematical modeling of electrorheological materials. Contin. Mech. Thermodyn. 13, 59–78 (2001)
Ru̇žička, M.: Electrorheological fluids: modeling and mathematical theory. Lecture Notes in Mathematics. Springer, Berlin (2000)
Simon, J.: Compact sets in $$L^p(0, T;{B})$$ L p ( 0 , T ; B ) . Ann. Mat. Pura Appl. 146, 65–96 (1987)
Tienari, M.: A degree theory for a class of mappings of monotone type in Orlicz–Sobolev spaces. Ann. Acad, Scientiarum Fennice Helsinki (1994)