Entropy, pressure and duality for Gibbs plans in Ergodic transport
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. T. Baraviera, L. Cioletti, A. O. Lopes, J. Mohr and R. R. Souza. On the general one-dimensional XY model: positive and zero temperature, selection and nonselection. Rev. Math. Phys., 23(10) (2011), 1063–1113, 82Bxx.
A. Baraviera, R. Leplaideur and A. O. Lopes. Ergodic Optimization, Zero temperature limits and theMax-Plus Algebra, mini-course in XXIX Colóquio Brasileiro de Matemática–IMPA–Rio de Janeiro (2013).
E. Garibaldi and A. Lopes. Functions for relative maximization. Dynamical Systems, 22 (2007), 511–528.
T. Kucherenko and C. Wolf. Geometry and entropy of generalized rotation sets. Israel J. Math., 199(2) (2014), 791–829.
S. Lalley. Distribution of periodic orbits of symbolic and Axiom A flows. Adv. in Appl. Math., 8(2) (1979), 154–193.
A. O. Lopes. An analogy of charge distribution on Julia sets with the Brownian motion. J. Math. Phys., 30(9) (1989), 2120–2124.
A. O. Lopes and P. Thieullen. Subactions for AnosovDiffeomorphisms. Asterisque, Geometric Methods in Dynamics (II)–volume 287 (2003), 135–146.
A. O. Lopes and P. Thieullen. Subactions for Anosov Flows. Erg Theo and Dyn Syst., 25(2) (2005), 605–628.
A. O. Lopes and J. Mengue. Duality Theorems in Ergodic Transport. Journal of Statistical Physics, 149(5) (2012), 921–942.
A. O. Lopes, J. K. Mengue, J. Mohr and R. R. Souza. Entropy and Variational Principle for one-dimensional Lattice Systems with a general a-priori probability: positive and zero temperature. Erg. Theory and Dyn Systems, 35(6) (2015), 1925–1961.
A. O. Lopes, E. R. Oliveira and Ph. Thieullen. The dual potential, the involution kernel and transport in ergodic optimization, to appear Dynamics, Games and Science, Edit. J-PBourguignon, R. Jelstch, A. Pinto and M. Viana, SpringerVerlag, 357–398.
J. Mengue and E. Oliveira. Duality results for Iterated Function Systems with a general family of branches, preprint Arxiv (2014).
J. Mohr and R. R. Souza. Ergodic Theory of TransportGibbs Plans, preprint (2015).
W. Parry and M. Pollicott. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque, 187–188 (1990).
E. A. da Silva, R. R. da Silva and R. R. Souza. The Analyticity of a Generalized Ruelle’s Operator. Bull. Braz. Math. Soc., 45 (2014), 53–72.
D. Ruelle. Thermodynamic Formalism. AddisonWelsey (1978).
R. R. Souza. Ergodic and Thermodynamic Games, to appear in Stoch. and Dyn.