Entropy-based fuzzy support vector machine for imbalanced datasets

Knowledge-Based Systems - Tập 115 - Trang 87-99 - 2017
Qi Fan1,2, Zhe Wang1,2, Dongdong Li1, Daqi Gao1, Hongyuan Zha3
1Department of Computer Science & Engineering, East China University of Science & Technology, Shanghai, 200237, P.R. China
2Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou 215006, PR China
3School of Computational Science and Engineering, College of Computing, Georgia Institute of Technology, Atlanta, Georgia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Akbani, 2004, Applying support vector machines to imbalanced datasets, 39

Alcalá-Fdez, 2011, KEEL: a software tool to assess evolutionary algorithms for data mining problems, J. Multiple-Valued Logic Soft Comput., 17, 2

Batista, 2004, A study of the behavior of several methods for balancing machine learning training data, 1, 20

Batuwita, 2010, FSVM-CIL: fuzzy support vector machines for class imbalance learning, IEEE Trans. Fuzzy Syst., 18, 558, 10.1109/TFUZZ.2010.2042721

Bowyer, 2002, SMOTE: synthetic minority over-sampling technique, J. Artif. Intell. Res., 16, 321, 10.1613/jair.953

Braga-Neto, 2004, Is cross-validation valid for small-sample microarray classification?, Bioinformatics, 20, 374, 10.1093/bioinformatics/btg419

Breiman, 1984, Classification and regression trees

Brown, 2012, An experimental comparison of classification algorithms for imbalanced credit scoring data sets, Expert Syst. Appl., 39, 3446, 10.1016/j.eswa.2011.09.033

Bunkhumpornpat, 2009, Safe-level-SMOTE: safe-level-synthetic minority over-sampling TEchnique for handling the class imbalanced problem, 475

Chaudhuri, 2011, Fuzzy support vector machine for bankruptcy prediction, Appl. Soft Comput., 11, 2472, 10.1016/j.asoc.2010.10.003

Chawla, 2008, Automatically countering imbalance and its empirical relationship to cost, Data Min. Knowl. Discov., 17, 225, 10.1007/s10618-008-0087-0

Chen, 2010, FRSVMs: fuzzy rough set based support vector machines, Fuzzy Sets Syst., 161, 596, 10.1016/j.fss.2009.04.007

Chen, 2014, An entropy-based uncertainty measurement approach in neighborhood systems, Inf Sci (Ny), 279, 239, 10.1016/j.ins.2014.03.117

Dai, 2015, Class imbalance learning via a fuzzy total margin based support vector machine, Appl. Soft. Comput., 31, 172, 10.1016/j.asoc.2015.02.025

Demšar, 2006, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1

Deng, 2013, Nonlinear process fault pattern recognition using statistics kernel PCA similarity factor, Neurocomputing, 121, 298, 10.1016/j.neucom.2013.04.042

Galar, 2012, A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches, IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42, 463, 10.1109/TSMCC.2011.2161285

Galar, 2013, Eusboost: enhancing ensembles for highly imbalanced data-sets by evolutionary undersampling, Pattern Recognit., 46, 3460, 10.1016/j.patcog.2013.05.006

García, 2012, Evolutionary-based selection of generalized instances for imbalanced classification, Knowl. Based Syst., 25, 3, 10.1016/j.knosys.2011.01.012

García, 2008, K-NN performance in a challenging scenario of imbalance and overlapping, Pattern Anal. Appl., 11, 269, 10.1007/s10044-007-0087-5

García-Pedrajas, 2013, OligoIs: scalable instance selection for class-imbalanced data sets, IEEE Trans. Cybern., 43, 332, 10.1109/TSMCB.2012.2206381

Guo, 2014, Oil spill detection using synthetic aperture radar images and feature selection in shape space, Int. J. Appl. Earth Obs. Geoinf., 30, 146, 10.1016/j.jag.2014.01.011

Hanmandlu, 2014, A new entropy function and a classifier for thermal face recognition, Eng. Appl. Artif. Intell., 36, 269, 10.1016/j.engappai.2014.06.028

He, 2009, Learning from imbalanced data, IEEE Trans. Knowl. Data Eng., 21, 1263, 10.1109/TKDE.2008.239

Hong, 2007, A kernel-based two-class classifier for imbalanced data sets, IEEE Trans. Neural Netw., 18, 28, 10.1109/TNN.2006.882812

Huang, 2005, Using AUC and accuracy in evaluating learning algorithms, IEEE Trans. Knowl. Data Eng., 17, 299, 10.1109/TKDE.2005.50

Japkowicz, 2002, The class imbalance problem: a systematic study, Intell. Data Anal., 6, 429, 10.3233/IDA-2002-6504

Kubat, 1997, Addressing the curse of imbalanced training sets: one-sided selection, 97, 179

Lin, 2002, Fuzzy support vector machines, IEEE Trans. Neural Netw., 13, 464, 10.1109/72.991432

Liu, 2009, Exploratory undersampling for class-imbalance learning, IEEE Trans. Syst. Man Cybern.Part B, 39

Long, 2013, An entropy-based multispectral image classification algorithm, IEEE Trans. Geosci. Remote Sens., 51, 5225, 10.1109/TGRS.2013.2272560

Maldonado, 2014, Imbalanced data classification using second-order cone programming support vector machines, Pattern Recognit., 47, 2070, 10.1016/j.patcog.2013.11.021

Newby, 2013, Coping with unbalanced class data sets in oral absorption models, J. Chem. Inf. Model., 53, 461, 10.1021/ci300348u

Ozcift, 2011, Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms, Comput. Methods Programs Biomed., 104, 443, 10.1016/j.cmpb.2011.03.018

Platt, 1999, Fast training of support vector machines using sequential minimal optimization, Adv. Kernel Methods, 3, 185

Rahman, 2014, A novel machine learning approach toward quality assessment of sensor data, IEEE Sens. J., 14, 1035, 10.1109/JSEN.2013.2291855

Raskutti, 2004, Extreme re-balancing for SVMs: a case study, SIGKDD Explor. Newsl., 6, 60, 10.1145/1007730.1007739

Renyi, 1970

Shannon, 2001, A mathematical theory of communication, SIGMOBILE Mobile Comput. Commun.Rev., 5, 3, 10.1145/584091.584093

Sonka, 2014

Sun, 2009, Classification of imbalanced data: a review, Int. J. Pattern Recognit. Artif. Intell., 23, 687, 10.1142/S0218001409007326

Tapkan, 2016, A cost-sensitive classification algorithm: BEE-miner, Knowl. Based Syst., 95, 99, 10.1016/j.knosys.2015.12.010

Tian, 2012, Fuzzy support vector machine based on non-equilibrium data, 2, 448

Tomek, 1976, Two modifications of CNN, IEEE Trans. Syst. Man Commun., 6, 769, 10.1109/TSMC.1976.4309452

Tsang, 2006, Efficient kernel feature extraction for massive data sets

Vapnik, 2000

Wang, 2016, Efficient graph similarity join for information integration on graphs, Front. Comput. Sci., 10, 317, 10.1007/s11704-015-4505-3

Wang, 2005, A new fuzzy support vector machine to evaluate credit risk, IEEE Trans. Fuzzy Syst., 13, 820, 10.1109/TFUZZ.2005.859320

Yang, 2011, A kernel fuzzy C-means clustering based fuzzy support vector machine algorithm for classification problems with outliers or noises,, IEEE Trans. Fuzzy Syst., 19, 105, 10.1109/TFUZZ.2010.2087382

Zhang, 2008, A rough margin based support vector machine, Inf. Sci., 178, 2204, 10.1016/j.ins.2007.12.012

Zhang, 2016, Multi-view dimensionality reduction via canonical random correlation analysis, Front. Comput. Sci., 10, 856, 10.1007/s11704-015-4538-7

Zhao, 2015, Cost-sensitive online classification with adaptive regularization and its applications, 649