Entire solutions with moving singularities for a semilinear heat equation with a critical exponent

Jin Takahashi1
1Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan

Tóm tắt

We consider the semilinear heat equation $$\partial _t u -\Delta u=u^{N/(N-2)}$$ in $$\Omega $$ with $$u=0$$ on $$\partial \Omega $$ , where $$N\ge 3$$ and $$\Omega $$ is a smooth bounded domain in $$\mathbf {R}^N$$ . Let $$\xi :\mathbf {R}\rightarrow \Omega $$ satisfy $$\overline{\{\xi (t);t\in \mathbf {R}\}}\subset \Omega $$ . Under some assumption on the uniform Hölder continuity of $$\xi $$ , we construct a nonnegative solution u defined for all $$t\in \mathbf {R}$$ satisfying $$u(x,t)\rightarrow \infty $$ for each $$t\in \mathbf {R}$$ as $$x\rightarrow \xi (t)$$ .

Tài liệu tham khảo

Aviles, P.: On isolated singularities in some nonlinear partial differential equations. Indiana Univ. Math. J. 32, 773–791 (1983) Aviles, P.: Local behavior of solutions of some elliptic equations. Commun. Math. Phys. 108, 177–192 (1987) Caffarelli, L.A., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989) Fila, M., Yanagida, E.: Homoclinic and heteroclinic orbits for a semilinear parabolic equation. Tohoku Math. J. 63, 561–579 (2011) Fila, M., Yanagida, E.: Non-accessible singular homoclinic orbits for a semilinear parabolic equation. Differ. Integral Equ. 27, 563–578 (2014) Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_{t}=\Delta u+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. I(13), 109–124 (1966) Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981) Kan, T., Takahashi, J.: On the profile of solutions with time-dependent singularities for the heat equation. Kodai Math. J. 37, 568–585 (2014) Kan, T., Takahashi, J.: Time-dependent singularities in semilinear parabolic equations: behavior at the singularities. J. Differ. Equ. 260, 7278–7319 (2016) Kan, T., Takahashi, J.: Time-dependent singularities in semilinear parabolic equations: existence of solutions. J. Differ. Equ. 263, 6384–6426 (2017) Matos, J., Terraneo, E.: Nonuniqueness for a critical nonlinear heat equation with any initial data. Nonlinear Anal. 55, 927–936 (2003) Ni, W.-M., Sacks, P.: Singular behavior in nonlinear parabolic equations. Trans. Am. Math. Soc. 287, 657–671 (1985) Pacard, F.: Existence and convergence of positive weak solutions of \(-\Delta u=u^{n/(n-2)}\) in bounded domains of \({\mathbf{R}}^n\), \(n\ge 3\). Calc. Var. Partial Differ. Equ. 1, 243–265 (1993) Poláčik, P.: Entire solutions and a Liouville theorem for a class of parabolic equations on the real line. Proc. Am. Math. Soc. 148, 2997–3008 (2020) Poláčik, P., Quittner, P.: Entire and ancient solutions of a supercritical semilinear heat equation. Discrete Contin. Dyn. Syst. 41, 413–438 (2021) Quittner, P.: Optimal Liouville theorems for superlinear parabolic problems. Duke Math. J. 170, 1113–1136 (2021) Quittner, P., Souplet, P.: Superlinear parabolic problems. Blow-up, global existence and steady states, 2nd edn. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser/Springer, Cham (2019) Sato, S., Yanagida, E.: Solutions with moving singularities for a semilinear parabolic equation. J. Differ. Equ. 246, 724–748 (2009) Sato, S., Yanagida, E.: Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete Contin. Dyn. Syst. 26, 313–331 (2010) Sato, S., Yanagida, E.: Appearance of anomalous singularities in a semilinear parabolic equation. Commun. Pure Appl. Anal. 11, 387–405 (2012) Takahashi, J.: Existence of solutions with moving singularities for a semilinear heat equation with a critical exponent. J. Math. Pures Appl. 148, 128–149 (2021) Takahashi, J., Yanagida, E.: Time-dependent singularities in the heat equation. Commun. Pure Appl. Anal. 14, 969–979 (2015) Tayachi, S., Weissler, F.B.: The nonlinear heat equation with high order mixed derivatives of the Dirac delta as initial values. Trans. Am. Math. Soc. 366, 505–530 (2014) Terraneo, E.: Non-uniqueness for a critical non-linear heat equation. Commun. Partial Differ. Equ. 27, 185–218 (2002)