Ensembles of wrappers for automated feature selection in fish age classification

Computers and Electronics in Agriculture - Tập 134 - Trang 27-32 - 2017
Sergio Bermejo1
1Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3 (C4 building), 08034 Barcelona, Spain

Tài liệu tham khảo

Ali, 2006, Improved support vector machine generalization using normalized input space, vol. 4304, 362 Bauer, 1999, An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Mach. Learn., 36, 105, 10.1023/A:1007515423169 Bermejo, S., 2000. Learning with Nearest Neighbour Classifiers. Ph.D. Dissertation, Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya. Bermejo, 2007, Fish age categorization from otolith images using multi-class support vector machines, Fish. Res., 84, 247, 10.1016/j.fishres.2006.11.021 Bermejo, 2014, The benefits of using otolith weight in statistical fish age classification: a case study of Atlantic cod species, Comput. Electron. Agric., 107, 1, 10.1016/j.compag.2014.06.001 Bird, 1986, Comparisons of hearing otoliths using Fourier series shape analysis, Can. J. Fish. Aquat. Sci., 43, 1228, 10.1139/f86-152 Blum, 1997, Selection of relevant features and examples in machine learning, Artif. Intell., 97, 245, 10.1016/S0004-3702(97)00063-5 Breiman, 1996, Heuristics of instability and stabilization in model selection, Ann. Stat., 24, 2350, 10.1214/aos/1032181158 Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655 Burke, 2008, Shape analysis of otolith annuli in Atlantic herring (Clupea harengus); a new method for tracking fish populations, Fish. Res., 91, 133, 10.1016/j.fishres.2007.11.013 Campana, 1993, Stock discrimination using otolith shape analysis, Can. J. Fish. Aquat. Sci., 50, 1062, 10.1139/f93-123 Castonguay, 1991, Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination, Can. J. Fish. Aquat. Sci., 48, 296, 10.1139/f91-041 Devroye, 1996 Dietterich, 2003, Ensemble learning, 405 Doering-Arjes, 2008, Estimating population age structure using otolith morphometrics: a test with known-age Atlantic cod (Gadus morhua) individuals, Can. J. Fish. Aquat. Sci., 65, 2342, 10.1139/F08-143 Duda, 2001 Efron, 1994 Fablet, 2005, Automated fish age estimation from otolith images using statistical learning, Fish. Res., 72, 279, 10.1016/j.fishres.2004.10.008 Flach, 2012 Galley, 2006, Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic cod, ICES J. Mar. Sci., 63, 1710, 10.1016/j.icesjms.2006.06.014 Girdler, 2010 Gheyas, 2010, Feature subset selection in large dimensionality domains, Pattern Recogn., 43, 5, 10.1016/j.patcog.2009.06.009 Guillaud, A., Ballet, P., Troadec, H., Rodin, V., Benzinou, A., Le Bihan, J., 1999. A multiagent system for edge detection: an application to growth ring detection on fish otoliths. In: Image Processing and its Applications, 1999 Seventh International Conference Publication No. 465, vol. 1, pp. 445–449. Guillaud, A., Troadec, H., Benzinou, A., Rodin, V., Le Bihan, J., 2000. Continuity perception using a multiagent system: an application to growth ring detection on fish otoliths. In: Pattern Recognition, 2000. Proceedings. 15th International Conference, vol. 2, pp. 519–522. Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157 Guyon, 2006, An introduction to feature extraction, 1 2006, 1 Hua, 2012, Fish species classification by color, texture and multi-class support vector machine using computer vision, Comput. Electron. Agric., 88, 133, 10.1016/j.compag.2012.07.008 Hsu, 2002, A comparison of methods for multi-class support vector machines, IEEE Trans. Neural Netw., 13, 415, 10.1109/72.991427 Kohavi, 1995 Liu, 2008, Feature selection for the imbalanced QSAR problems by using EasyEnsemble, Int. J. Comput. Biol. Drug Des., 1, 334, 10.1504/IJCBDD.2008.022206 Long, 2003, Boosting and microarray data, Mach. Learn., 52, 31, 10.1023/A:1023937123600 Lou, 2005, Using otolith weight–age relationships to predict age-based metrics of coral reef fish populations at different spatial scales, Fish. Res., 71, 279, 10.1016/j.fishres.2004.09.003 Lou, 2007, Using otolith weight–age relationships to predict age based metrics of coral reef fish populations across different temporal studies, Fish. Res., 83, 216, 10.1016/j.fishres.2006.09.017 Metin, 2008, Use of otolith length and weight in age determination of poor cod (Trisopterus minutus Linn., 1758), Turk J. Zool., 32, 293 Michie, D., Spiegelhalter, D.J., Taylor, C.C., 1994. Machine Learning, Neural and Statistical Classification, Prentice Hall, New York. Available online at: <http://www.amsta.leeds.ac.uk/~charles/statlog/>. Ochwada, 2008, Predicting the age of fish using general and generalized linear models of biometric data: a case study of two estuarine finfish from New South Wales, Australia, Fish. Res., 90, 187, 10.1016/j.fishres.2007.10.007 Pino, 2004, Otolith weight as an estimator of age in the Patagonian grenadier, Macruronus magellanicus, in central-south Chile, Fish. Res., 66, 145, 10.1016/j.fishres.2003.07.003 Raudys, 1991, Small sample size effects in statistical pattern recognition: recommendations for practitioners, IEEE Trans. Pattern Anal., 13, 252, 10.1109/34.75512 Robotham, 2010, Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks, Fish. Res., 102, 115, 10.1016/j.fishres.2009.10.015 Rodin, 1996, Growth ring detection on fish otoliths by a graph construction, Proc. Int. Conf. Image Process., 1, 685, 10.1109/ICIP.1996.560971 Schölkopf, 2001 Steinwart, 2008 Somol, 2009, Criteria ensembles in feature selection, 304 Theodoridis, 2008 Tuv, 2009, Feature selection with ensembles, artificial variables, and redundancy elimination, J. Mach. Learn. Res., 10, 1341 Vapnik, 1998 Webb, 2002 Weston, J., Elisseeff, A., BakIr, G., Sinz, F., 2006. The Spider (matlab toolbox). Available online at: <http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html>. Windeatt, 2007, Ensemble-based Feature Selection Criteria, 168