Ensembles of wrappers for automated feature selection in fish age classification
Tài liệu tham khảo
Ali, 2006, Improved support vector machine generalization using normalized input space, vol. 4304, 362
Bauer, 1999, An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Mach. Learn., 36, 105, 10.1023/A:1007515423169
Bermejo, S., 2000. Learning with Nearest Neighbour Classifiers. Ph.D. Dissertation, Departament d’Enginyeria Electrònica, Universitat Politècnica de Catalunya.
Bermejo, 2007, Fish age categorization from otolith images using multi-class support vector machines, Fish. Res., 84, 247, 10.1016/j.fishres.2006.11.021
Bermejo, 2014, The benefits of using otolith weight in statistical fish age classification: a case study of Atlantic cod species, Comput. Electron. Agric., 107, 1, 10.1016/j.compag.2014.06.001
Bird, 1986, Comparisons of hearing otoliths using Fourier series shape analysis, Can. J. Fish. Aquat. Sci., 43, 1228, 10.1139/f86-152
Blum, 1997, Selection of relevant features and examples in machine learning, Artif. Intell., 97, 245, 10.1016/S0004-3702(97)00063-5
Breiman, 1996, Heuristics of instability and stabilization in model selection, Ann. Stat., 24, 2350, 10.1214/aos/1032181158
Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655
Burke, 2008, Shape analysis of otolith annuli in Atlantic herring (Clupea harengus); a new method for tracking fish populations, Fish. Res., 91, 133, 10.1016/j.fishres.2007.11.013
Campana, 1993, Stock discrimination using otolith shape analysis, Can. J. Fish. Aquat. Sci., 50, 1062, 10.1139/f93-123
Castonguay, 1991, Usefulness of Fourier analysis of otolith shape for Atlantic mackerel (Scomber scombrus) stock discrimination, Can. J. Fish. Aquat. Sci., 48, 296, 10.1139/f91-041
Devroye, 1996
Dietterich, 2003, Ensemble learning, 405
Doering-Arjes, 2008, Estimating population age structure using otolith morphometrics: a test with known-age Atlantic cod (Gadus morhua) individuals, Can. J. Fish. Aquat. Sci., 65, 2342, 10.1139/F08-143
Duda, 2001
Efron, 1994
Fablet, 2005, Automated fish age estimation from otolith images using statistical learning, Fish. Res., 72, 279, 10.1016/j.fishres.2004.10.008
Flach, 2012
Galley, 2006, Combined methods of otolith shape analysis improve identification of spawning areas of Atlantic cod, ICES J. Mar. Sci., 63, 1710, 10.1016/j.icesjms.2006.06.014
Girdler, 2010
Gheyas, 2010, Feature subset selection in large dimensionality domains, Pattern Recogn., 43, 5, 10.1016/j.patcog.2009.06.009
Guillaud, A., Ballet, P., Troadec, H., Rodin, V., Benzinou, A., Le Bihan, J., 1999. A multiagent system for edge detection: an application to growth ring detection on fish otoliths. In: Image Processing and its Applications, 1999 Seventh International Conference Publication No. 465, vol. 1, pp. 445–449.
Guillaud, A., Troadec, H., Benzinou, A., Rodin, V., Le Bihan, J., 2000. Continuity perception using a multiagent system: an application to growth ring detection on fish otoliths. In: Pattern Recognition, 2000. Proceedings. 15th International Conference, vol. 2, pp. 519–522.
Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157
Guyon, 2006, An introduction to feature extraction, 1
2006, 1
Hua, 2012, Fish species classification by color, texture and multi-class support vector machine using computer vision, Comput. Electron. Agric., 88, 133, 10.1016/j.compag.2012.07.008
Hsu, 2002, A comparison of methods for multi-class support vector machines, IEEE Trans. Neural Netw., 13, 415, 10.1109/72.991427
Kohavi, 1995
Liu, 2008, Feature selection for the imbalanced QSAR problems by using EasyEnsemble, Int. J. Comput. Biol. Drug Des., 1, 334, 10.1504/IJCBDD.2008.022206
Long, 2003, Boosting and microarray data, Mach. Learn., 52, 31, 10.1023/A:1023937123600
Lou, 2005, Using otolith weight–age relationships to predict age-based metrics of coral reef fish populations at different spatial scales, Fish. Res., 71, 279, 10.1016/j.fishres.2004.09.003
Lou, 2007, Using otolith weight–age relationships to predict age based metrics of coral reef fish populations across different temporal studies, Fish. Res., 83, 216, 10.1016/j.fishres.2006.09.017
Metin, 2008, Use of otolith length and weight in age determination of poor cod (Trisopterus minutus Linn., 1758), Turk J. Zool., 32, 293
Michie, D., Spiegelhalter, D.J., Taylor, C.C., 1994. Machine Learning, Neural and Statistical Classification, Prentice Hall, New York. Available online at: <http://www.amsta.leeds.ac.uk/~charles/statlog/>.
Ochwada, 2008, Predicting the age of fish using general and generalized linear models of biometric data: a case study of two estuarine finfish from New South Wales, Australia, Fish. Res., 90, 187, 10.1016/j.fishres.2007.10.007
Pino, 2004, Otolith weight as an estimator of age in the Patagonian grenadier, Macruronus magellanicus, in central-south Chile, Fish. Res., 66, 145, 10.1016/j.fishres.2003.07.003
Raudys, 1991, Small sample size effects in statistical pattern recognition: recommendations for practitioners, IEEE Trans. Pattern Anal., 13, 252, 10.1109/34.75512
Robotham, 2010, Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks, Fish. Res., 102, 115, 10.1016/j.fishres.2009.10.015
Rodin, 1996, Growth ring detection on fish otoliths by a graph construction, Proc. Int. Conf. Image Process., 1, 685, 10.1109/ICIP.1996.560971
Schölkopf, 2001
Steinwart, 2008
Somol, 2009, Criteria ensembles in feature selection, 304
Theodoridis, 2008
Tuv, 2009, Feature selection with ensembles, artificial variables, and redundancy elimination, J. Mach. Learn. Res., 10, 1341
Vapnik, 1998
Webb, 2002
Weston, J., Elisseeff, A., BakIr, G., Sinz, F., 2006. The Spider (matlab toolbox). Available online at: <http://www.kyb.tuebingen.mpg.de/bs/people/spider/main.html>.
Windeatt, 2007, Ensemble-based Feature Selection Criteria, 168