Ensemble feature selection: Homogeneous and heterogeneous approaches

Knowledge-Based Systems - Tập 118 - Trang 124-139 - 2017
Borja Seijo-Pardo1, Iago Porto-Díaz1, Verónica Bolón‐Canedo1, Amparo Alonso‐Betanzos1
1Department of Computer Science, University of A Coruña Campus de Elviña s/n 15071 - A Coruña, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kuncheva, 2003, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy, Mach. Learn., 51, 181, 10.1023/A:1022859003006

Kuncheva, 2004

Bramer, 2007, 180

Yu, 2004, Efficient feature selection via analysis of relevance and redundancy, J. Mach. Learn. Res., 5, 1205

Guyon, 2006, 207

Cortes, 1995, Support-vector networks, Mach. Learn., 20, 273, 10.1007/BF00994018

Joachims, 2002, Optimizing search engines using clickthrough data, 133

Guyon, 2003, An introduction to variable and feature selection, J. Mach. Learn. Res., 3, 1157

Hall, 2003, Benchmarking attribute selection techniques for discrete class data mining, Knowl. Data Eng., IEEE Trans., 15, 1437, 10.1109/TKDE.2003.1245283

Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655

Schapire, 1990, The strength of weak learnability, Mach. Learn., 5, 197, 10.1007/BF00116037

Tsymbal, 2005, Diversity in search strategies for ensemble feature selection, Inf. Fusion, 6, 83, 10.1016/j.inffus.2004.04.003

Lichman, 2013, UCI machine learning repository

Bolón-Canedo, 2012, An ensemble of filters and classifiers for microarray data classification, Patt. Recognit., 45, 531, 10.1016/j.patcog.2011.06.006

Yang, 2011, Robust feature selection for microarray data based on multicriterion fusion, IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB), 8, 1080, 10.1109/TCBB.2010.103

Windeatt, 2011, Embedded feature ranking for ensemble mlp classifiers, IEEE Trans. Neural Netw., 22, 988, 10.1109/TNN.2011.2138158

Windeatt, 2007, Stopping Criteria for Ensemble-based Feature Selection, 271

Bolón-Canedo, 2014, Data classification using an ensemble of filters, Neurocomputing, 135, 13, 10.1016/j.neucom.2013.03.067

Olsson, 2006, Combining feature selectors for text classification, 798

Wang, 2010, Ensemble feature selection technique for software quality classification., 215

Wang, 2010, A comparative study of ensemble feature selection techniques for software defect prediction, 135

Yang, 2008, A Novel Ga-taguchi-based Feature Selection Method, 112

Abeel, 2010, Robust biomarker identification for cancer diagnosis with ensemble feature selection methods, Bioinformatics, 26, 392, 10.1093/bioinformatics/btp630

Ben Brahim, 2013, Robust ensemble feature selection for high dimensional data sets, 151

Seijo-Pardo, 2015, Ensemble Feature Selection for Rankings of Features, 29

Park, 1991, Universal approximation using radial-basis-function networks, Neural Comput., 3, 246, 10.1162/neco.1991.3.2.246

Bramer, 2013, Data for Data Mining, 9

Quinlan, 1986, Induction of decision trees, Mach. Learn., 1, 81, 10.1007/BF00116251

Peng, 2005, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy, Patt. Anal. Mach. Intell., IEEE Trans., 27, 1226, 10.1109/TPAMI.2005.159

Kononenko, 1994, Estimating attributes: analysis and extensions of relief, 171

Kira, 1992, The feature selection problem: Traditional methods and a new algorithm, 129

Guyon, 2002, Gene selection for cancer classification using support vector machines, Mach. Learn., 46, 389, 10.1023/A:1012487302797

Mejía-Lavalle, 2006, Feature selection with a perceptron neural net, 131

Lyerly, 1952, The average spearman rank correlation coefficient, Psychometrika, 17, 421, 10.1007/BF02288917

Abdi, 2007, The kendall rank correlation coefficient, Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA, 508

Kolde, 2012, Robust rank aggregation for gene list integration and meta-analysis, Bioinformatics, 28, 573, 10.1093/bioinformatics/btr709

Willett, 2013, Combination of similarity rankings using data fusion, J. Chem. Inf. Model, 53, 1, 10.1021/ci300547g

Aerts, 2006, Gene prioritization through genomic data fusion, Nat. Biotechnol., 24, 537, 10.1038/nbt1203

Bolón-Canedo, 2015, Recent advances and emerging challenges of feature selection in the context of big data, Knowl. Based Syst., 86, 33, 10.1016/j.knosys.2015.05.014

Bolón-Canedo, 2013, A review of feature selection methods on synthetic data, Knowl. Inf. Syst., 34, 483, 10.1007/s10115-012-0487-8

Khoshgoftaar, 2007, An empirical study of learning from imbalanced data using random forest, 2, 310

Mejía-Lavalle, 2006, Feature selection with a perceptron neural net, 131

Basu, 2006

Morán-Fernández, 2015, A Time Efficient Approach for Distributed Feature Selection Partitioning by Features, 245

Seijo-Pardo, 2016, Using a feature selection ensemble on DNA microarray datasets, 277

Hall, 2009, The weka data mining software: an update, ACM SIGKDD explorations newsletter, 11, 10, 10.1145/1656274.1656278

Burges, 1998, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov., 2, 121, 10.1023/A:1009715923555

Schölkopf, 1999

Vapnik, 2000

J. Li, K. Cheng, S. Wang, F. Morstatter, R. Trevino, J. Tang, H. Liu, Feature selection: a data perspective, arXiv preprint arXiv:1601.07996(2016).

Tukey, 1949, Comparing individual means in the analysis of variance, Biometrics, 99, 10.2307/3001913

Eiras-Franco, 2015, Paralelización de algoritmos de selección de caracteríticas en la plataforma weka, 949

M.A. Hall, Correlation-based feature selection of discrete and numeric class machine learning (2000).