Enrichment and characterization of a psychrophilic ‘Candidatus Accumulibacter phosphatis’ culture

International Biodeterioration & Biodegradation - Tập 124 - Trang 267-275 - 2017
W.D. Tian1,2, C. Ma3,4, Y.M. Lin2, L. Welles2,5, C. Lopez-Vazquez5, M.C.M. van Loosdrecht2
1School of Environmental Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China
2Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, the Netherlands
3State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
4Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Rd. Unit 3222, Storrs, CT 06269-3222, United States
5Environmental Engineering and Water Technology Department, UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands

Tài liệu tham khảo

APHA, 1998 Acevedo, 2012, Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage, Water Res., 46, 1889, 10.1016/j.watres.2012.01.003 Amorim, 2016, Treatment of a simulated wastewater amended with a chiral pharmaceuticals mixture by an aerobic granular sludge sequencing batch reactor, Int. Biodeterior. Biodegr, 115, 277, 10.1016/j.ibiod.2016.09.009 Barnard, 1975, Biological nutrient removal without the addition of chemicals, Water Res., 9, 485, 10.1016/0043-1354(75)90072-X Barr, 2016, Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm, Environ. Microbiol., 18, 273, 10.1111/1462-2920.13019 Brdjanovic, 1998, Influence of temperature on biological phosphorus removal: process and molecular ecological studies, Water Res., 32, 1035, 10.1016/S0043-1354(97)00322-9 Brdjanovic, 1997, Temperature effects on physiology of biological phosphorus removal, J. Environ. Eng., 123, 144, 10.1061/(ASCE)0733-9372(1997)123:2(144) Campos, 1996, Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii, J. Bacteriol., 178, 1793, 10.1128/jb.178.7.1793-1799.1996 Carvalho, 2007, Denitrifying phosphorus removal: linking the process performance with the microbial community structure, Water Res., 41, 4383, 10.1016/j.watres.2007.06.065 Crocetti, 2000, Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation, Appl. Environ. Microbiol., 66, 1175, 10.1128/AEM.66.3.1175-1182.2000 De Kreuk, 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761, 10.1002/bit.20470 DeVault, 1990, Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa, Mol. Microbiol., 4, 737, 10.1111/j.1365-2958.1990.tb00644.x Fialho, 1990, Distribution of alginate gene sequences in the Pseudomonas rRNA homology group I-Azomonas-Azotobacter lineage of superfamily B procaryotes, Appl. Environ. Microbiol., 56, 436, 10.1128/aem.56.2.436-443.1990 Flowers, 2009, Denitrification capabilities of two biological phosphorus removal sludges dominated by different 'Candidatus Accumulibacter' clades, Environ. Microbiol. Rep., 1, 583, 10.1111/j.1758-2229.2009.00090.x He, 2007, “Candidatus accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes, Appl. Environ. Microbiol., 73, 5865, 10.1128/AEM.01207-07 Hesselmann, 1999, Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge, Syst. Appl. Microbiol., 22, 454, 10.1016/S0723-2020(99)80055-1 Johnson, 2009, Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity, Biomacromolecules, 10, 670, 10.1021/bm8013796 Kuba, 1996, A metabolic model for biological phosphorus removal by denitrifying organisms, Biotechnol. Bioeng., 52, 685, 10.1002/(SICI)1097-0290(19961220)52:6<685::AID-BIT6>3.0.CO;2-K Kuo, 2001, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties, Biomaterials, 22, 511, 10.1016/S0142-9612(00)00201-5 Lanham, 2012, Optimisation of glycogen quantification in mixed microbial cultures, Bioresour. Technol., 118, 518, 10.1016/j.biortech.2012.05.087 Law, 2016, Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions, Sci. Rep., 6, 10.1038/srep25719 Lin, 2010, Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant, Water Res., 44, 3355, 10.1016/j.watres.2010.03.019 Lin, 2013, Apatite accumulation enhances the mechanical property of anammox granules, Water Res., 47, 4556, 10.1016/j.watres.2013.04.061 Lin, 2013, The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge, Water Res., 47, 57, 10.1016/j.watres.2012.09.017 Liu, 2015, Accumulation and isolation of simultaneous denitrifying polyphosphate-accumulating organisms in an improved sequencing batch reactor system at low temperature, Int. Biodeterior. Biodegr, 100, 140, 10.1016/j.ibiod.2015.02.003 Lopez-Vazquez, 2009, Temperature effects on glycogen accumulating organisms, Water Res., 43, 2852, 10.1016/j.watres.2009.03.038 Lopez-Vazquez, 2009, Modeling the PAO-GAO competition: effects of carbon source, pH and temperature, Water Res., 43, 450, 10.1016/j.watres.2008.10.032 Lopez-Vazquez, 2007, Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms, Biotechnol. Bioeng., 97, 483, 10.1002/bit.21302 Martín, 2006, Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities, Nat. Biotechnol., 24, 1263, 10.1038/nbt1247 Martins, 1991, Alginate biosynthesis in mucoid recombinants of Pseudomonas aeruginosa overproducing GDP-mannose dehydrogenase, Enzyme Microb. Technol., 13, 385, 10.1016/0141-0229(91)90199-K Martinsen, 1989, Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads, Biotechnol. Bioeng., 33, 79, 10.1002/bit.260330111 Nor-Anuar, 2012, Strength characteristics of aerobic granular sludge, Water Sci. Technol., 65, 309, 10.2166/wst.2012.837 Oehmen, 2010, Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes, Water Res., 44, 4473, 10.1016/j.watres.2010.06.017 Ong, 2014, High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus “Accumulibacter phosphatis”, Water Res., 64, 102, 10.1016/j.watres.2014.06.038 Rehm, 1997, Bacterial alginates: biosynthesis and applications, Appl. Environ. Microbiol., 48, 281 Remminghorst, 2006, Bacterial alginates: from biosynthesis to applications, Biotechnol. Lett., 28, 1701, 10.1007/s10529-006-9156-x Semerci, 2016, Fate of carbon, nitrogen and phosphorus removal in a post-anoxic system treating low strength wastewater, Int. Biodeterior. Biodegr, 108, 166, 10.1016/j.ibiod.2015.12.008 Seviour, 2012, Aerobic sludge granulation: a tale of two polysaccharides?, Water Res., 46, 4803, 10.1016/j.watres.2012.06.018 Sharma, 2011, A comparative study on the viscoelastic properties of human and animal lenses, Exp. Eye Res., 93, 681, 10.1016/j.exer.2011.08.009 Shi, 2006, Combining anoxic denitrifying ability with aerobic-anoxic phosphorus-removal examinations to screen denitrifying phosphorus-removing bacteria, Int. Biodeterior. Biodegr, 57, 121, 10.1016/j.ibiod.2006.01.001 Skennerton, 2015, Expanding our view of genomic diversity in Candidatus Accumulibacter clades, Environ. Microbiol., 17, 1574, 10.1111/1462-2920.12582 Slater, 2010, Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP), Water Res., 44, 4908, 10.1016/j.watres.2010.07.028 Smidsrod, 1996, Chemistry and physical properties of alginates, Carbohydrates Eur., 14, 6 Smolders, 1994, Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence, Biotechnol. Bioeng., 43, 461, 10.1002/bit.260430605 Tatnell, 1994, GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies, Microbiology, 140, 1745, 10.1099/13500872-140-7-1745 Tian, 2013, Occurrence of PAOI in a low temperature EBPR system, Chemosphere, 92, 1314, 10.1016/j.chemosphere.2013.05.009 Turco, 2011, Mechanical spectroscopy and relaxometry on alginate hydrogels: a comparative analysis for structural characterization and network mesh size determination, Biomacromolecules, 12, 1272, 10.1021/bm101556m Van Loosdrecht, 1998, Upgrading of waste water treatment processes for integrated nutrient removal the BCFS® process, Water Sci. Technol., 37, 209, 10.2166/wst.1998.0359 Wang, 2015, Comparison of performance, microorganism populations, and bio-physiochemical properties of granular and flocculent sludge from denitrifying phosphorus removal reactors, Chem. Eng. J., 262, 49, 10.1016/j.cej.2014.09.065 Welles, 2015, Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake, Water Res., 83, 354, 10.1016/j.watres.2015.06.045 Wineman, 2000 Winkler, 2011, Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures, Water Res., 45, 3291, 10.1016/j.watres.2011.03.024 Zeng, 2003, Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems, Biotechnol. Bioeng., 81, 92, 10.1002/bit.10455 Zeng, 2003, Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system, Biotechnol. Bioeng., 81, 397, 10.1002/bit.10484