Enrichment and characterization of a psychrophilic ‘Candidatus Accumulibacter phosphatis’ culture
Tài liệu tham khảo
APHA, 1998
Acevedo, 2012, Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage, Water Res., 46, 1889, 10.1016/j.watres.2012.01.003
Amorim, 2016, Treatment of a simulated wastewater amended with a chiral pharmaceuticals mixture by an aerobic granular sludge sequencing batch reactor, Int. Biodeterior. Biodegr, 115, 277, 10.1016/j.ibiod.2016.09.009
Barnard, 1975, Biological nutrient removal without the addition of chemicals, Water Res., 9, 485, 10.1016/0043-1354(75)90072-X
Barr, 2016, Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm, Environ. Microbiol., 18, 273, 10.1111/1462-2920.13019
Brdjanovic, 1998, Influence of temperature on biological phosphorus removal: process and molecular ecological studies, Water Res., 32, 1035, 10.1016/S0043-1354(97)00322-9
Brdjanovic, 1997, Temperature effects on physiology of biological phosphorus removal, J. Environ. Eng., 123, 144, 10.1061/(ASCE)0733-9372(1997)123:2(144)
Campos, 1996, Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii, J. Bacteriol., 178, 1793, 10.1128/jb.178.7.1793-1799.1996
Carvalho, 2007, Denitrifying phosphorus removal: linking the process performance with the microbial community structure, Water Res., 41, 4383, 10.1016/j.watres.2007.06.065
Crocetti, 2000, Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation, Appl. Environ. Microbiol., 66, 1175, 10.1128/AEM.66.3.1175-1182.2000
De Kreuk, 2005, Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge, Biotechnol. Bioeng., 90, 761, 10.1002/bit.20470
DeVault, 1990, Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in Pseudomonas aeruginosa, Mol. Microbiol., 4, 737, 10.1111/j.1365-2958.1990.tb00644.x
Fialho, 1990, Distribution of alginate gene sequences in the Pseudomonas rRNA homology group I-Azomonas-Azotobacter lineage of superfamily B procaryotes, Appl. Environ. Microbiol., 56, 436, 10.1128/aem.56.2.436-443.1990
Flowers, 2009, Denitrification capabilities of two biological phosphorus removal sludges dominated by different 'Candidatus Accumulibacter' clades, Environ. Microbiol. Rep., 1, 583, 10.1111/j.1758-2229.2009.00090.x
He, 2007, “Candidatus accumulibacter” population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes, Appl. Environ. Microbiol., 73, 5865, 10.1128/AEM.01207-07
Hesselmann, 1999, Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge, Syst. Appl. Microbiol., 22, 454, 10.1016/S0723-2020(99)80055-1
Johnson, 2009, Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity, Biomacromolecules, 10, 670, 10.1021/bm8013796
Kuba, 1996, A metabolic model for biological phosphorus removal by denitrifying organisms, Biotechnol. Bioeng., 52, 685, 10.1002/(SICI)1097-0290(19961220)52:6<685::AID-BIT6>3.0.CO;2-K
Kuo, 2001, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: Part 1. Structure, gelation rate and mechanical properties, Biomaterials, 22, 511, 10.1016/S0142-9612(00)00201-5
Lanham, 2012, Optimisation of glycogen quantification in mixed microbial cultures, Bioresour. Technol., 118, 518, 10.1016/j.biortech.2012.05.087
Law, 2016, Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions, Sci. Rep., 6, 10.1038/srep25719
Lin, 2010, Characterization of alginate-like exopolysaccharides isolated from aerobic granular sludge in pilot-plant, Water Res., 44, 3355, 10.1016/j.watres.2010.03.019
Lin, 2013, Apatite accumulation enhances the mechanical property of anammox granules, Water Res., 47, 4556, 10.1016/j.watres.2013.04.061
Lin, 2013, The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge, Water Res., 47, 57, 10.1016/j.watres.2012.09.017
Liu, 2015, Accumulation and isolation of simultaneous denitrifying polyphosphate-accumulating organisms in an improved sequencing batch reactor system at low temperature, Int. Biodeterior. Biodegr, 100, 140, 10.1016/j.ibiod.2015.02.003
Lopez-Vazquez, 2009, Temperature effects on glycogen accumulating organisms, Water Res., 43, 2852, 10.1016/j.watres.2009.03.038
Lopez-Vazquez, 2009, Modeling the PAO-GAO competition: effects of carbon source, pH and temperature, Water Res., 43, 450, 10.1016/j.watres.2008.10.032
Lopez-Vazquez, 2007, Short-term temperature effects on the anaerobic metabolism of glycogen accumulating organisms, Biotechnol. Bioeng., 97, 483, 10.1002/bit.21302
Martín, 2006, Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities, Nat. Biotechnol., 24, 1263, 10.1038/nbt1247
Martins, 1991, Alginate biosynthesis in mucoid recombinants of Pseudomonas aeruginosa overproducing GDP-mannose dehydrogenase, Enzyme Microb. Technol., 13, 385, 10.1016/0141-0229(91)90199-K
Martinsen, 1989, Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads, Biotechnol. Bioeng., 33, 79, 10.1002/bit.260330111
Nor-Anuar, 2012, Strength characteristics of aerobic granular sludge, Water Sci. Technol., 65, 309, 10.2166/wst.2012.837
Oehmen, 2010, Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes, Water Res., 44, 4473, 10.1016/j.watres.2010.06.017
Ong, 2014, High-temperature EBPR process: the performance, analysis of PAOs and GAOs and the fine-scale population study of Candidatus “Accumulibacter phosphatis”, Water Res., 64, 102, 10.1016/j.watres.2014.06.038
Rehm, 1997, Bacterial alginates: biosynthesis and applications, Appl. Environ. Microbiol., 48, 281
Remminghorst, 2006, Bacterial alginates: from biosynthesis to applications, Biotechnol. Lett., 28, 1701, 10.1007/s10529-006-9156-x
Semerci, 2016, Fate of carbon, nitrogen and phosphorus removal in a post-anoxic system treating low strength wastewater, Int. Biodeterior. Biodegr, 108, 166, 10.1016/j.ibiod.2015.12.008
Seviour, 2012, Aerobic sludge granulation: a tale of two polysaccharides?, Water Res., 46, 4803, 10.1016/j.watres.2012.06.018
Sharma, 2011, A comparative study on the viscoelastic properties of human and animal lenses, Exp. Eye Res., 93, 681, 10.1016/j.exer.2011.08.009
Shi, 2006, Combining anoxic denitrifying ability with aerobic-anoxic phosphorus-removal examinations to screen denitrifying phosphorus-removing bacteria, Int. Biodeterior. Biodegr, 57, 121, 10.1016/j.ibiod.2006.01.001
Skennerton, 2015, Expanding our view of genomic diversity in Candidatus Accumulibacter clades, Environ. Microbiol., 17, 1574, 10.1111/1462-2920.12582
Slater, 2010, Monitoring associations between clade-level variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal-restriction fragment length polymorphism (T-RFLP), Water Res., 44, 4908, 10.1016/j.watres.2010.07.028
Smidsrod, 1996, Chemistry and physical properties of alginates, Carbohydrates Eur., 14, 6
Smolders, 1994, Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence, Biotechnol. Bioeng., 43, 461, 10.1002/bit.260430605
Tatnell, 1994, GDP-mannose dehydrogenase is the key regulatory enzyme in alginate biosynthesis in Pseudomonas aeruginosa: evidence from metabolite studies, Microbiology, 140, 1745, 10.1099/13500872-140-7-1745
Tian, 2013, Occurrence of PAOI in a low temperature EBPR system, Chemosphere, 92, 1314, 10.1016/j.chemosphere.2013.05.009
Turco, 2011, Mechanical spectroscopy and relaxometry on alginate hydrogels: a comparative analysis for structural characterization and network mesh size determination, Biomacromolecules, 12, 1272, 10.1021/bm101556m
Van Loosdrecht, 1998, Upgrading of waste water treatment processes for integrated nutrient removal the BCFS® process, Water Sci. Technol., 37, 209, 10.2166/wst.1998.0359
Wang, 2015, Comparison of performance, microorganism populations, and bio-physiochemical properties of granular and flocculent sludge from denitrifying phosphorus removal reactors, Chem. Eng. J., 262, 49, 10.1016/j.cej.2014.09.065
Welles, 2015, Accumulibacter clades Type I and II performing kinetically different glycogen-accumulating organisms metabolisms for anaerobic substrate uptake, Water Res., 83, 354, 10.1016/j.watres.2015.06.045
Wineman, 2000
Winkler, 2011, Selective sludge removal in a segregated aerobic granular biomass system as a strategy to control PAO-GAO competition at high temperatures, Water Res., 45, 3291, 10.1016/j.watres.2011.03.024
Zeng, 2003, Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems, Biotechnol. Bioeng., 81, 92, 10.1002/bit.10455
Zeng, 2003, Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxic activated sludge system, Biotechnol. Bioeng., 81, 397, 10.1002/bit.10484