Enriched Doping Level and Tuned Fiber Fractal Dimensions in Nonwoven Carbon‐Doped Polyaniline for Efficient Solid‐State Supercapacitors

Energy Technology - Tập 5 Số 2 - Trang 253-266 - 2017
Niraj Kumar1, Prasanta Kumar Sahoo2, H. S. Panda1
1Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025, India
2Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Tóm tắt

AbstractNonwoven fibrous mats of polyaniline/carbon black on conducting substrates are synthesized through a two‐step oxidative process. Adsorbed and catalyzed aniline monomers in the synthesis process improved the doping degree (0.381) in the hybrid fibers. The formation of a porous mat on substrates was confirmed by using electron microscopy and small‐angle X‐ray scattering. The fractal dimensions of the fibers are correlated with Porod's law and suggest the presence of a nonfractal structure in the PCN1 mat. The hybrid mat exhibited a high porosity and effective surface area, even interfaces, and conductive pathways for the electrode/electrolyte to improve the kinetic process. Electrochemical measurements have been conducted on developed fibers, which showed a high specific capacitance of around 1526 F g−1, excellent cyclic stability, and elevated energy density (212 Wh kg−1) after doping carbon into polyaniline (PANI). Additionally, a symmetric solid‐state supercapacitor device was fabricated, a capacitance around 270 F g−1 was measured, and it was able to light a commercial light‐emitting diode (LED).

Từ khóa


Tài liệu tham khảo

10.1126/science.1158736

10.1038/nmat2297

10.1002/cssc.201100571

10.1016/S0378-7753(96)02474-3

10.1016/j.jpowsour.2006.08.014

10.1039/c1jm10758e

10.1021/cr020730k

10.1016/S0008-6223(00)00183-4

10.1002/smll.201401862

10.1021/cm2002429

10.1002/aenm.201100560

10.1021/nl203600x

10.1016/j.electacta.2006.09.067

10.1021/am300640y

10.1021/am505533c

10.1021/am4013165

10.1039/C3RA47155A

10.1021/jp9109145

10.1016/j.jpowsour.2011.10.106

10.1021/ef301795g

10.1016/j.jpowsour.2015.06.053

10.1016/j.synthmet.2009.05.014

10.1016/j.jpowsour.2009.11.028

10.1039/c2cp42192e

10.1016/j.synthmet.2008.09.018

10.1016/j.electacta.2008.09.004

10.1016/j.ijhydene.2014.01.018

10.1021/sc5001034

10.1016/j.cej.2010.12.032

10.1016/S0008-6223(01)00100-2

10.1021/am100293r

10.1088/0022-3727/46/33/335103

10.1039/c0cp00699h

10.1039/c0nr00224k

10.1038/srep03568

10.1016/j.jpowsour.2007.03.048

10.1021/ja809263y

10.1021/nn204688c

10.1016/S0013-4686(02)00411-5

10.1038/nature04705

10.1038/16393

10.1021/jp504527b

10.1103/PhysRevB.46.12266

10.1021/jp107041m

10.1021/jp0705976

Smarsly B., 2005, Prog. Colloid Polym. Sci., 130, 105

10.1039/C0CP00869A

10.1016/j.jcis.2011.12.032

10.1039/c3sm52018h

10.1016/j.jcis.2008.09.012

10.1039/c0cp02024a

10.1021/jp9113255

10.1016/j.jcis.2008.09.039

10.1021/ie401037n

10.1186/1556-276X-8-179

10.1016/j.jmbbm.2010.10.014

10.1016/j.cageo.2011.03.002

10.1039/c0dt00641f

10.1039/C0DT01163K

10.1016/j.matchemphys.2008.10.069

10.1016/j.jelechem.2014.04.006

10.1021/am404422g

10.1016/S0378-7753(02)00364-6

10.1002/(SICI)1097-0126(199704)42:4<380::AID-PI727>3.0.CO;2-F

10.1039/c2jm16216d

10.1016/j.carbon.2010.01.014

10.1002/cssc.201400147

10.1021/jp511095s

10.1016/j.carbon.2012.01.056