Enlargeability, foliations, and positive scalar curvature
Tóm tắt
Từ khóa
Tài liệu tham khảo
Benameur, M.-T., Heitsch, J.L., Wahl, C.: An interesting example for spectral invariants. J. K-Theory 13, 305–311 (2014)
Cuesta, F.Alcalde, Hector, G.: Feuilletages en surfaces, cycles évanouissants et variétés de Poisson. Monatshefte Math. 124, 191–213 (1997)
Connes, A.: Cyclic cohomology and the transverse fundamental class of a foliation, In: Geometric Methods in Operator Algebras (Kyoto, 1983). Pitman Research Notes in Mathematics Series, vol. 123. Longman Scientific & Technology, Harlow (1986) 52–144
Gromov, M.: Positive curvature, macroscopic dimension, spectral gaps and higher signatures. In: Functional Analysis on the Eve of the 21st Century, vol. II. Progress in Mathematics, vol. 132, pp. 1–213. Birkhuser, Boston (1996)
Gromov, M., Lawson Jr., H.B.: Spin and scalar curvature in the presence of a fundamental group I. Ann. Math. 111, 209–230 (1980)
Gromov, M., Lawson Jr., H.B.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. 111, 423–434 (1980)
Gromov, M., Lawson Jr., H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. I.H.E.S. 58, 295–408 (1983)
Heitsch, J.L.: Bismut superconnections and the Chern character for Dirac operators on foliated manifolds. K-Theory 9, 507–528 (1995)
Kamber, F.W., Tondeur, P.: On the linear independence of certain cohomology classes of B $$\Gamma _q$$ Γ q . In: Studies in Algebraic Topology, Adv. in Math. Suppl. Stud., vol. 5, pp. 213–263. Academic Press, New York (1979)
Lawson, H.B. Jr., Michelson, M.-L.: Spin Geometry, Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton, NJ (1989)
Lazarov, C., Pasternack, J.: Residues and characteristic classes for Riemannian foliations. J. Differ. Geom. 11, 599–612 (1976)
Lichnerowicz, A.: Laplacien sur une variété riemannienne et spineure. Atti Accad. Naz. Lincei Rendiconti 33, 187–191 (1962)
Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscr. Math. 28, 159–183 (1979)
Schrödinger, E.: Dirac’sches Elektron im Schwerefeld. Sitzungsber. Preuss. Akad. Wissen. Phys. Math. 11, 105–128 (1932)