Enhancing the rate of ex situ mineral carbonation in dunites via ball milling

Advanced Powder Technology - Tập 27 - Trang 360-371 - 2016
Ioannis Rigopoulos1,2, Michalis A. Vasiliades3, Ioannis Ioannou2,4, Angelos M. Efstathiou3, Athanasios Godelitsas5, Theodora Kyratsi1,2
1Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus
2Nanotechnology Research Unit, University of Cyprus, 1678 Nicosia, Cyprus
3Department of Chemistry, Heterogeneous Catalysis Lab, University of Cyprus, 1678 Nicosia, Cyprus
4Department of Civil and Environmental Engineering, University of Cyprus, 1678, Nicosia, Cyprus
5Department of Geology and Geoenvironment, University of Athens, 15784 Zographou, Greece

Tài liệu tham khảo

Siegenthaler, 1987, Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data, Tellus, 39B, 140, 10.1111/j.1600-0889.1987.tb00278.x Keeling, 1995, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature, 75, 666, 10.1038/375666a0 Lackner, 1995, Carbon dioxide disposal in carbonate minerals, Energy, 20, 1153, 10.1016/0360-5442(95)00071-N Oelkers, 2008, Mineral carbonation of CO2, Elements, 4, 333, 10.2113/gselements.4.5.333 Olajire, 2013, A review of mineral carbonation technology in sequestration of CO2, J. Petrol. Sci. Eng., 109, 364, 10.1016/j.petrol.2013.03.013 Seifritz, 1990, CO2 disposal by means of silicates, Nature, 345, 486, 10.1038/345486b0 Matter, 2009, Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation, Nat. Geosci., 2, 837, 10.1038/ngeo683 Kelemen, 2011, Rates and mechanisms of mineral carbonation in peridotite: natural processes and recipes for enhanced, in situ CO2 capture and storage, Annu. Rev. Earth Planet. Sci., 39, 545, 10.1146/annurev-earth-092010-152509 Gislason, 2010, Mineral sequestration of carbon dioxide in basalt: a pre-injection overview of the CarbFix project, Int. J. Greenh. Gas Con., 4, 537, 10.1016/j.ijggc.2009.11.013 Gislason, 2014, Carbon storage in basalt, Science, 344, 373, 10.1126/science.1250828 Gerdemann, 2007, Ex situ aqueous mineral carbonation, Environ. Sci. Technol., 41, 2587, 10.1021/es0619253 Pronost, 2011, Carbon sequestration kinetic and storage capacity of ultramafic mining waste, Environ. Sci. Technol., 45, 9413, 10.1021/es203063a Schuiling, 2006, Enhanced weathering: an effective and cheap tool to sequester CO2, Clim. Change, 74, 349, 10.1007/s10584-005-3485-y Haug, 2010, Investigating dissolution of mechanically activated olivine for carbonation purposes, Appl. Geochem., 25, 1547, 10.1016/j.apgeochem.2010.08.005 Turianicová, 2013, A comparison of the reactivity of activated and non-activated olivine with CO2, Int. J. Miner. Process., 123, 73, 10.1016/j.minpro.2013.05.006 Rigopoulos, 2015, Carbon dioxide storage in olivine basalts: effect of ball milling process, Powder Technol., 273, 220, 10.1016/j.powtec.2014.12.046 Rigopoulos, 2015, A method to enhance the CO2 storage capacity of pyroxenitic rocks, Greenhounse Gas. Sci. Technol., 5, 1 Andreani, 2009, Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites, Environ. Sci. Technol., 43, 1226, 10.1021/es8018429 Koukouzas, 2009, Sequestration of CO2 in magnesium silicates, in Western Macedonia, Greece, Int. J. Miner. Process., 93, 179, 10.1016/j.minpro.2009.07.013 Wolff-Boenisch, 2011, Dissolution of basalts and peridotite in seawater, in the presence of ligands, and CO2: implications for mineral sequestration of carbon dioxide, Geochim. Cosmochim. Acta, 75, 5510, 10.1016/j.gca.2011.07.004 Balucan, 2013, Energy cost of heat activating serpentinites for CO2 storage by mineralisation, Int. J. Greenh. Gas Con., 17, 225, 10.1016/j.ijggc.2013.05.004 Wang, 2013, Forsterite dissolution in saline water at elevated temperature and high CO2 pressure, Environ. Sci. Technol., 47, 168, 10.1021/es301231n Bodénan, 2014, Ex situ mineral carbonation for CO2 mitigation: evaluation of mining waste resources, aqueous carbonation processability and life cycle assessment (Carmex project), Miner. Eng., 59, 52, 10.1016/j.mineng.2014.01.011 Pearce, 2010, The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting, Gondwana Res., 18, 60, 10.1016/j.gr.2009.12.003 Mukasa, 1987, Uranium–lead ages of plagiogranites from the Troodos ophiolite, Cyprus, and their tectonic significance, Geology, 1, 825, 10.1130/0091-7613(1987)15<825:UIAOPF>2.0.CO;2 Batanova, 2000, Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus, Geology, 28, 55, 10.1130/0091-7613(2000)28<55:CHISMP>2.0.CO;2 Robertson, 2002, Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region, Lithos, 65, 1, 10.1016/S0024-4937(02)00160-3 Gass, 1973, Intrusion, extrusion, and metamorphism at constructive margins, evidence from the Troodos massif, Cyprus, Nature, 242, 26, 10.1038/242026a0 Kleiv, 2006, Mechanical activation of olivine, Miner. Eng., 19, 340, 10.1016/j.mineng.2005.08.008 Sandvik, 2011, Mechanically activated minerals as a sink for CO2, Adv. Powder Technol., 22, 416, 10.1016/j.apt.2010.06.004 Costa, 2000, The selective catalytic reduction of nitric oxide with methane over La2O3–CaO systems: synergistic effects and surface reactivity studies of NO, CH4, O2, and CO2 by transient techniques, J. Catal., 194, 250, 10.1006/jcat.2000.2943 Efstathiou, 1990, Enthalpy and entropy of H2 adsorption on Rh/Al2O3 measured by temperature-programmed desorption, J. Catal., 124, 116, 10.1016/0021-9517(90)90108-V Evans, 1967, Infra-red study of adsorption of carbon dioxide and water on magnesium oxide, Trans. Faraday Soc., 63, 2769, 10.1039/tf9676302769 Stark, 1996, Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence, Chem. Mater., 8, 1904, 10.1021/cm950583p León, 2010, Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility, Ind. Eng. Chem. Res., 49, 3663, 10.1021/ie902072a Prescott, 2005, Application of calcined Mg–Al hydrotalcites for Michael additions: an investigation of catalytic activity and acid–base properties, J. Catal., 234, 119, 10.1016/j.jcat.2005.06.004 Kwon, 2009, Infra-Red study of surface carbonation on polycrystalline magnesium hydroxide, Bull. Korean Chem. Soc., 30, 2567, 10.5012/bkcs.2009.30.11.2567 Vayssilov, 2011, Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation, J. Phys. Chem. C, 115, 23435, 10.1021/jp208050a Lackner, 2003, A guide to CO2 sequestration, Science, 300, 1677, 10.1126/science.1079033 Johnson, 2014, Olivine dissolution and carbonation under conditions relevant for in situ carbon storage, Chem. Geol., 373, 93, 10.1016/j.chemgeo.2014.02.026 Béarat, 2006, Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation, Environ. Sci. Technol., 40, 4802, 10.1021/es0523340 Huijgen, 2005 Tang, 2013, Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture, Appl. Surf. Sci., 277, 47, 10.1016/j.apsusc.2013.03.142 Yong, 2002, Hydrotalcite-like compounds as adsorbents for carbon dioxide, Energy Convers. Manage., 43, 1865, 10.1016/S0196-8904(01)00125-X Ram Reddy, 2008, Influence of water on high-temperature CO2 capture using layered double hydroxide derivatives, Ind. Eng. Chem. Res., 47, 2630, 10.1021/ie0716060 Yazaydin, 2009, Enhanced CO2 adsorption in metal–organic frameworks via occupation of open-metal sites by coordinated water molecules, Chem. Mater., 21, 1425, 10.1021/cm900049x Liu, 2010, CO2/H2O adsorption equilibrium and rates on metal–organic frameworks: HKUST-1 and Ni/DOBDC, Langmuir, 26, 14301, 10.1021/la102359q Ding, 2000, Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent, Chem. Eng. Sci., 55, 3461, 10.1016/S0009-2509(99)00596-5