Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL
Tài liệu tham khảo
Abderrezek, 2018, Comparative study of temperature effect on thin film solar cells, J. Nano- and Electronic Phys., 10, 10.21272/jnep.10(2).02027
Araki, 2009, Preparation of Cu2ZnSnS4 thin films by sulfurization of co-electroplated Cu-Zn-Sn precursors, Phys. Status Solidi (C), 6, 1266, 10.1002/pssc.200881182
Baker, 1971, Photoelectric work function measurements on nickel crystals and films, Surf. Sci., 24, 572, 10.1016/0039-6028(71)90282-2
Benami, 2019, Effect of CZTS parameters on photovoltaic solar cell from numerical simulation, Journal of Energy and Power Engineering, 13, 32
Bhattacharya, 2019, Beyond 30% conversion efficiency in silicon solar cells: A numerical demonstration, Sci. Rep., 9, 12482, 10.1038/s41598-019-48981-w
Bouachiba, 2014, Structural and optical properties of TiO2 thin films grown by sol-gel dip coating process, Mater. Sci.-Poland, 32, 1, 10.2478/s13536-013-0147-z
Burgelman, 2000, Modelling polycrystalline semiconductor solar cells, Thin Solid Films, 361–362, 527, 10.1016/S0040-6090(99)00825-1
Candelise, 2012, Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity, Prog. Photovolt. Res. Appl., 20, 816, 10.1002/pip.2216
Chen, 2016, Comparative study of self-constituent buffer layers (CuS, SnS, ZnS) for synthesis Cu2ZnSnS4 thin films, Mater. Lett., 169, 126, 10.1016/j.matlet.2016.01.030
Chen, 2010, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4, Phys. Rev. B, 81, 10.1103/PhysRevB.81.245204
Cherouana, 2017, Study of CZTS and CZTSSe solar cells for buffer layers selection, Appl. Surf. Sci., 424, 251, 10.1016/j.apsusc.2017.05.027
Chueh, 2015, Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells, Energy Environ. Sci., 8, 1160, 10.1039/C4EE03824J
Cui, 2014, Boosting Cu2ZnSnS4 solar cells efficiency by a thin ag intermediate layer between absorber and back contact, Appl. Phys. Lett., 104, 10.1063/1.4863951
Dhakal, R., Thapaliya, P., Li, Y., Jiang, M., Yan, X., 2011. TiO2 coated ZnO nanorod to enhance efficiency of hybrid bulk heterojunction solar cells, pp. 000708–000711.
Dhakal, 2014, Characterization of a CZTS thin film solar cell grown by sputtering method, Sol. Energy, 100, 23, 10.1016/j.solener.2013.11.035
Ferdaous, 2019, Elucidating the role of interfacial MoS2 layer in Cu2ZnSnS4 thin film solar cells by numerical analysis, Sol. Energy, 178, 162, 10.1016/j.solener.2018.11.055
Glunz, 1999, Field-effect passivation of the SiO2-Si interface, J. Appl. Phys., 86, 683, 10.1063/1.370784
Green, 2018, Solar cell efficiency tables (version 52), Prog. Photovoltaics Res. Appl., 26, 427, 10.1002/pip.3040
Gupta, 2018, Theoretical studies of single and tandem Cu2ZnSn(S/Se)4 junction solar cells for enhanced efficiency, Opt. Mater., 82, 11, 10.1016/j.optmat.2018.05.030
Haddout, 2019, A review on the numerical modeling of CdS/CZTS-based solar cells, Appl. Phys. A, 125, 124, 10.1007/s00339-019-2413-3
Hajzus, 2018, Contacts to solution-synthesized SnS nanoribbons: dependence of barrier height on metal work function, Nanoscale, 10, 319, 10.1039/C7NR07403D
Hariskos, 2005, Buffer layers in Cu(In, Ga)Se2 solar cells and modules, Thin Solid Films, 480–481, 99, 10.1016/j.tsf.2004.11.118
Heriche, 2014, Thickness optimization of various layers of CZTS solar cell, J. New Technol. Mater., 4, 27, 10.12816/0010293
Jackson, 2011, New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%, Prog. Photovolt. Res. Appl., 19, 894, 10.1002/pip.1078
Jiang, M., Y, X., 2013. Cu2ZnSnS4 thin film solar cells: Present status and future prospects. In: Solar Cells - Research and Application Perspectives. InTech.
Kabir, 2012, Amorphous silicon single-junction thin-film solar cell exceeding 10% efficiency by design optimization, Int. J. Photoenergy, 2012, 1, 10.1155/2012/460919
Kahoul, 2014, Assessing the early degradation of photovoltaic modules performance in the Saharan region, Energy Convers. Manage., 82, 320, 10.1016/j.enconman.2014.03.034
Karade, 2019, Insights into kesterite's back contact interface: A status review, Sol. Energy Mater. Sol. Cells, 200, 10.1016/j.solmat.2019.04.033
Katagiri, 2001, Development of thin film solar cell based on Cu2ZnSnS4 thin films, Sol. Energy Mater. Sol. Cells, 65, 141, 10.1016/S0927-0248(00)00088-X
Khattak, 2018, Enhancement of the conversion efficiency of thin film kesterite solar cell, J. Renew. Sustain. Energy, 10
Khusayfan, N.M., El-Nahass, M.M., 2013. Study of structure and electrooptical characteristics of indium tin oxide thin films. Adv. Condensed Matter Phys. 2013, 1–8.
Ki, 2011, Earth-abundant element photovoltaics directly from soluble precursors with high yield using a non-toxic solvent, Adv. Energy Mater., 1, 732, 10.1002/aenm.201100140
Kowsar, 2019, Progress in major thin-film solar cells: Growth technologies, layer materials and efficiencies, Int. J. Renew. Energy Res., 9, 2
Kumar, A., Thakur, A.D., 2018. The simulation of CZTS solar cell for performance improvement, AIP Conf. Proc. 1953. p. 050009.
Kumar, 2014, Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects, Energy Environ. Sci., 7, 45, 10.1039/C3EE41981A
Landis, G., Rafaelle, R., Merritt, D., 2004. High temperature solar cell development. In: 2nd International Energy Conversion Engineering Conference, 19th European Photovoltaic Science and Engineering Conference, Paris, France.
Li, 2015, The effect of ZnS segregation on Zn-rich CZTS thin film solar cells, J. Alloy. Compd., 632, 178, 10.1016/j.jallcom.2015.01.205
Lin, 2016, Organohalide perovskites for solar energy conversion, Acc. Chem. Res., 49, 545, 10.1021/acs.accounts.5b00483
Lin, 2016, Numerical analysis of InxGa1-xN/SnS and AlxGa1-xN/SnS heterojunctionsolar cells, Energy Convers. Manage., 119, 361, 10.1016/j.enconman.2016.04.059
Liu, 2014, Enhancing the Cu2ZnSnS4 solar cell efficiency by back contact modification: Inserting a thin TiB2 intermediate layer at Cu2ZnSnS4/Mo interface, Appl. Phys. Lett., 104
Liu, 2012, A new simulation software of solar cells-wxAMPS, Sol. Energy Mater. Sol. Cells, 98, 124, 10.1016/j.solmat.2011.10.010
Michaelson, 1977, The work function of the elements and its periodicity, J. Appl. Phys., 48, 4729, 10.1063/1.323539
Mickelsen, 1981, Development of a 9.4% efficient thinfilm CuInSe2/CdS solar cell, 800
Minemoto, 2001, Cu(In, Ga)Se2 solar cells with controlled conduction band offset of window/Cu(In, Ga)Se2 layers, J. Appl. Phys., 89, 8327, 10.1063/1.1366655
Minemoto, 2001, Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Sol. Energy Mater. Sol. Cells, 67, 83, 10.1016/S0927-0248(00)00266-X
Mitzi, 2011, The path towards a high-performance solution-processed kesterite solar cell, Sol. Energy Mater. Sol. Cells, 95, 1421, 10.1016/j.solmat.2010.11.028
Morales-Acevedo, A. (Ed.), 2013. Solar Cells - Research and Application Perspectives. InTech.
Mouchou, R., Jen, T., Laseinde, O., Ukoba, K., 2020. Numerical simulation and optimization of p-NiO/n-TiO2 solar cell system using SCAPS. Materials Today: Proceedings. URL: https://doi.org/10.1016%2Fj.matpr.2020.04.880, doi:10.1016/j.matpr.2020.04.880.
Nakamura, 2019, Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%, IEEE J. Photovolt., 9, 1863, 10.1109/JPHOTOV.2019.2937218
Partain, 1983, Degradation of a CuxS/CdS solar cell in hot, moist air and recovery in hydrogen and air, J. Appl. Phys., 54, 6708, 10.1063/1.331858
Patel, 2012, Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—a numerical simulation approach and comparison to experiments, Physica B, 407, 4391, 10.1016/j.physb.2012.07.042
Rappaport, 1959, The photovoltaic effect and its utilization, Sol. Energy, 3, 8, 10.1016/0038-092X(59)90002-7
Ren, 2017, Investigation of the SnS/Cu2ZnSnS4 interfaces in kesterite thin-film solar cells, ACS Energy Lett., 2, 976, 10.1021/acsenergylett.7b00151
Rolland, 2017, Computational analysis of hybrid perovskite on silicon 2-T tandem solar cells based on a si tunnel junction, Opt. Quant. Electron., 50, 21, 10.1007/s11082-017-1284-0
Saha, 2018, Boosting the efficiency of single junction kesterite solar cell using ag mixed Cu2ZnSnS4 active layer, RSC Adv., 8, 4905, 10.1039/C7RA12352C
Sai, 2015, Triple-junction thinfilm silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%, Appl. Phys. Lett., 106, 10.1063/1.4921794
Schorr, 2007, A neutron diffraction study of the stannite-kesterite solid solution series, Eur. J. Mineral., 19, 65, 10.1127/0935-1221/2007/0019-0065
Scragg, 2013, Effects of back contact instability on Cu2ZnSnS4 devices and processes, Chem. Mater., 25, 3162, 10.1021/cm4015223
Shahahmadi, 2015, Properties of a-SiGe thin films on glass by co-sputtering for photovoltaic absorber application, J. Nanosci. Nanotechnol., 15, 1, 10.1166/jnn.2015.11412
Sharmin, 2020, Sputtered single-phase kesterite Cu2ZnSnS4 (CZTS) thin film for photovoltaic applications: Post annealing parameter optimization and property analysis, AIP Adv., 10, 10.1063/1.5129202
Shin, 2011, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber, Prog. Photovoltaics Res. Appl., 21, 72, 10.1002/pip.1174
Shockley, 1961, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys., 32, 510, 10.1063/1.1736034
Song, 2014, A review on development prospect of CZTS based thin film solar cells, Int. J. Photoenergy, 2014, 1, 10.1155/2014/613173
Sze, S.M., Ng, K.K., 1981. Physics of Semiconductor Devices, p. 264 (Chapter-14). Prentice-Hall series in solid state physical electronic, John Wiley and Sons, New York.
Taguchi, 2005, Obtaining a higher Voc in HIT cells, Prog. Photovoltaics Res. Appl., 13, 481, 10.1002/pip.646
Wagner, 1974, CuInSe2/CdS heterojunction photovoltaic detectors, Appl. Phys. Lett., 25, 434, 10.1063/1.1655537
Wanda, 2016, Numerical investigations and analysis of Cu2ZnSnS4 based solar cells by SCAPS-1D, Int. J. Photoenergy, 2016, 1, 10.1155/2016/2152018
Wang, 2010, Thermally evaporated Cu2ZnSnS4 solar cells, Appl. Phys. Lett., 97
Wang, 2013, Device characteristics of CZTSSe thinfilm solar cells with 12.6% efficiency, Adv. Energy Mater., 4, 1301465, 10.1002/aenm.201301465
Wangperawong, 2011, Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers, Thin Solid Films, 519, 2488, 10.1016/j.tsf.2010.11.040
Wolfe, 1989
Wu, 2008, Synthesis and photovoltaic application of copper(I) sulfide nanocrystals, Nano Lett., 8, 2551, 10.1021/nl801817d
Xia, 2013, Characterization of Cu2ZnSnS4 thin films prepared by solution-based deposition techniques, Physics Procedia, 48, 228, 10.1016/j.phpro.2013.07.036
Xiao, 2017, CdTe thin film solar cell with NiO as a back contact buffer layer, Sol. Energy Mater. Sol. Cells, 169, 61, 10.1016/j.solmat.2017.05.006
Yan, 2017, Beyond 11% efficient sulfide kesterite Cu2ZnxCd1-xSnS4 solar cell: Effects of cadmium alloying, ACS Energy Lett., 2, 930, 10.1021/acsenergylett.7b00129
Yin, 2015, Limitation factors for the performance of kesterite Cu2ZnSnS4 thin film solar cells studied by defect characterization, RSCAdvances, 5, 40369
Yoshikawa, 2017, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy, 2, 17032, 10.1038/nenergy.2017.32
Yue, 2009, Characterization and optical properties of the single crystalline SnS nanowire arrays, Nanoscale Res. Lett., 4, 359, 10.1007/s11671-009-9253-6
Zhang, 2018, V2O5 as hole transporting material for efficient all inorganic Sb2S3 solar cells, ACS Appl. Mater. Interfaces, 10, 27098, 10.1021/acsami.8b09843
Zhao, 1999, 24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates, Prog. Photovoltaics Res. Appl., 7, 471, 10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO;2-7
Zhao, W., Zhou, W., Miao, X., 2012. Numerical simulation of CZTS thin film solar cell. In: 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan, IEEE. pp. 502–505.
Zhou, 2011, Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method, Mater. Lett., 65, 1535, 10.1016/j.matlet.2011.03.013