Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing

Additive Manufacturing - Tập 30 - Trang 100922 - 2019
Sunil Bhandari1,2, Roberto Lopez‐Anido1,2, Douglas J. Gardner1,3
1Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME, 04469, USA
2Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, ME, 04469, USA
3School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang, 2017, 3D printing of polymer matrix composites: a review and prospective, Compos. Part B: Eng., 110, 442, 10.1016/j.compositesb.2016.11.034

I. ASTM, 2015

Bhandari, 2019, Finite element modeling of 3D-printed part with cellular internal structure using homogenized properties, Prog. Addit. Manuf., 4, 143, 10.1007/s40964-018-0070-2

Torrado, 2016, Failure analysis and anisotropy evaluation of 3D-Printed tensile test specimens of different geometries and print raster patterns, J. Fail. Anal. Prev., 16, 154, 10.1007/s11668-016-0067-4

Bhandari, 2018, Finite element analysis of thermoplastic polymer extrusion 3D printed material for mechanical property prediction, Addit. Manuf., 22, 187, 10.1016/j.addma.2018.05.009

Shaffer, 2014, On reducing anisotropy in 3D printed polymers via ionizing radiation, Polymer, 55, 5969, 10.1016/j.polymer.2014.07.054

Somireddy, 2019, Analysis of the Material Behavior of 3D Printed Laminates Via FFF, Exp. Mech., 59, 871, 10.1007/s11340-019-00511-5

Zaldivar, 2017, Influence of processing and orientation print effects on the mechanical and thermal behavior of 3D-Printed ULTEM® 9085 Material, Addit. Manuf., 13, 71, 10.1016/j.addma.2016.11.007

Caminero, 2018, Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling, Polym. Test., 68, 415, 10.1016/j.polymertesting.2018.04.038

Tekinalp, 2014, Highly oriented carbon fiber–polymer composites via additive manufacturing, Compos. Sci. Technol., 105, 144, 10.1016/j.compscitech.2014.10.009

Jiang, 2017, Anisotropic mechanical properties of oriented carbon fiber filled polymer composites produced with fused filament fabrication, Addit. Manuf., 18, 84, 10.1016/j.addma.2017.08.006

Hwang, 2014, Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process, J. Electron. Mater., 44, 771, 10.1007/s11664-014-3425-6

Zhang, 2018, Interfacial bonding strength of short carbon fiber/acrylonitrile-butadiene-styrene composites fabricated by fused deposition modeling, Compos. Part B: Eng., 137, 51, 10.1016/j.compositesb.2017.11.018

Love, 2014, The importance of carbon fiber to polymer additive manufacturing, J. Mater. Res., 29, 1893, 10.1557/jmr.2014.212

Duty, 2019, Z-Pinning approach for 3D printing mechanically isotropic materials, Addit. Manuf., 27, 175, 10.1016/j.addma.2019.03.007

de Gennes, 1971, Reptation of a polymer chain in the presence of fixed obstacles, J. Chem. Phys., 55, 572, 10.1063/1.1675789

Kim, 1983, A theory of healing at a polymer-polymer interface, Macromolecules, 16, 1115, 10.1021/ma00241a013

Lee, 1987, A model of the manufacturing process of thermoplastic matrix composites, J. Compos. Mater., 21, 1017, 10.1177/002199838702101103

Sun, 2008, Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyp. J., 14, 72, 10.1108/13552540810862028

Coogan, 2017, Healing simulation for bond strength prediction of FDM, Rapid Prototyp. J., 23, 551, 10.1108/RPJ-03-2016-0051

Chesser, 2018

Yerazunis, 2016, Strengthening ABS, nylon, and polyester 3D printed parts by stress tensor aligned deposition paths and five-axis printing

Sweeney, 2017, Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating, Sci. Adv., 3, 10.1126/sciadv.1700262

Ravi, 2016, An in-process laser localized pre-deposition heating approach to inter-layer bond strengthening in extrusion based polymer additive manufacturing, J. Manuf. Processes, 24, 179, 10.1016/j.jmapro.2016.08.007

Deshpande, 2019, Interlayer thermal history modification for interface strength in fused filament fabricated parts, Prog. Addit. Manuf., 4, 63, 10.1007/s40964-018-0063-1

Kishore, 2017, Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components, Addit. Manuf., 14, 7, 10.1016/j.addma.2016.11.008

Faes, 2016, Influence of inter-layer cooling time on the quasi-static properties of ABS components produced via fused deposition modelling, Procedia CIRP, 42, 748, 10.1016/j.procir.2016.02.313

Pan, 2016, Effect of FDM process on adhesive strength of polylactic acid (PLA) filament, Key Eng. Mater., 667, 10.4028/b-UfP7hr

Bellehumeur, 2004, Modeling of bond formation between polymer filaments in the fused deposition modeling process, J. Manuf. Processes, 6, 170, 10.1016/S1526-6125(04)70071-7

Takayama, 2011, Effect of annealing on the mechanical properties of PLA/PCL and PLA/PCL/LTI polymer blends, J. Mech. Behav. Biomed. Mater., 4, 255, 10.1016/j.jmbbm.2010.10.003

Bassett, 1988, On crystallization phenomena in PEEK, Polymer, 29, 1745, 10.1016/0032-3861(88)90386-2

Wittbrodt, 2015, The effects of PLA color on material properties of 3-D printed components, Addit. Manuf., 8, 110, 10.1016/j.addma.2015.09.006

Yang, 2017, Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material, J. Mater. Process. Technol., 248, 1, 10.1016/j.jmatprotec.2017.04.027

Benwood, 2018, Improving the impact strength and heat resistance of 3D printed models: structure, property, and processing correlationships during fused deposition modeling (FDM) of poly(lactic acid), ACS Omega, 3, 4400, 10.1021/acsomega.8b00129

Thakkar, 1981, Impact strength of polymers. 3: the effect of annealing on cold worked polycarbonates, Polym. Eng. Sci., 21, 155, 10.1002/pen.760210308

Song, 2017, Measurements of the mechanical response of unidirectional 3D-printed PLA, Mater. Des., 123, 154, 10.1016/j.matdes.2017.03.051

D’Amico, 2017, Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling, Rapid Prototyp. J., 23, 943, 10.1108/RPJ-05-2016-0077

Kantaros, 2013, Fiber Bragg grating based investigation of residual strains in ABS parts fabricated by fused deposition modeling process, Mater. Des., 50, 44, 10.1016/j.matdes.2013.02.067

Casavola, 2017, Residual stress measurement in fused deposition modelling parts, Polym. Test., 58, 249, 10.1016/j.polymertesting.2017.01.003

Brenken, 2018, Fused filament fabrication of fiber-reinforced polymers: a review, Addit. Manuf., 21, 1, 10.1016/j.addma.2018.01.002

Wootthikanokkhan, 2013, Crystallization and thermomechanical properties of PLA composites: effects of additive types and heat treatment, J. Appl. Polym. Sci., 129, 215, 10.1002/app.38715

Torres, 2015, Mechanical property optimization of FDM PLA in shear with multiple objectives, JOM, 67, 1183, 10.1007/s11837-015-1367-y

Ivey, 2017, Characterizing short-fiber-reinforced composites produced using additive manufacturing, Adv. Manuf. Polym. Compos. Sci., 3, 81

Wang, 2017, Improving the impact strength of poly(lactic acid) (PLA) in fused layer modeling (FLM), Polymer, 114, 242, 10.1016/j.polymer.2017.03.011

Wang, 2018, Contribution of printing parameters to the interfacial strength of polylactic acid (PLA) in material extrusion additive manufacturing, Prog. Addit. Manuf., 3, 165, 10.1007/s40964-018-0041-7

Hart, 2018, Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing, Polymer, 144, 192, 10.1016/j.polymer.2018.04.024

ASTM, 2018

McIlroy, 2017, Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing, Polymer, 123, 376, 10.1016/j.polymer.2017.06.051

McIlroy, 2017, Deformation of an amorphous polymer during the fused-filament-fabrication method for additive manufacturing, J. Rheol., 61, 379, 10.1122/1.4976839

Cicala, 2018, Polylactide (PLA) filaments a biobased solution for additive manufacturing: correlating rheology and thermomechanical properties with printing quality, Materials (Basel), 11, 10.3390/ma11071191

Greco, 2011, Assessment of the relevance of sintering in thermoplastic commingled yarn consolidation, Polym. Compos., 32, 657, 10.1002/pc.21080

ASTM, 2014

Vadori, 2013, The effect of mold temperature on the performance of injection molded poly(lactic acid)-based bioplastic, Macromol. Mater. Eng., 298, 981, 10.1002/mame.201200274

Fischer, 1973, Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions, Kolloid-Z. Z. Polym., 251, 980, 10.1007/BF01498927

Wach, 2018, Enhancement of mechanical properties of FDM-PLA parts via thermal annealing, Macromol. Mater. Eng., 303, 10.1002/mame.201800169

Tsai, 2010, Crystallinity and dimensional stability of biaxial oriented poly(lactic acid) films, Polym. Degrad. Stab., 95, 1292, 10.1016/j.polymdegradstab.2010.02.032

Srithep, 2013, Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid), Polym. Eng. Sci., 53, 580, 10.1002/pen.23304

Fang, 1999, Rheological properties of amorphous and semicrystalline polylactic acid polymers, Ind. Crops Prod., 10, 47, 10.1016/S0926-6690(99)00009-6

Tabi, 2010, Crystalline structure of annealed polylactic acid and its relation to processing, Express Polym. Lett., 4, 659, 10.3144/expresspolymlett.2010.80

Tábi, 2016, Effect of crystalline forms (α′ and α) of poly(lactic acid) on its mechanical, thermo-mechanical, heat deflection temperature and creep properties, Eur. Polym. J., 82, 232, 10.1016/j.eurpolymj.2016.07.024

Liu, 2012, Isothermal crystallization kinetics of Fiber/Polylactic acid composites and morphology, Polym. Technol. Eng., 51, 597, 10.1080/03602559.2012.659309

Fazita, 2015, Disposal options of bamboo fabric-reinforced poly(Lactic) acid composites for sustainable packaging: biodegradability and recyclability, Polymers, 7, 1476, 10.3390/polym7081465

Kurniawan, 2013, Effect of silane treatment on mechanical properties of basalt Fiber/Polylactic acid ecofriendly composites, Polym. Technol. Eng., 52, 97, 10.1080/03602559.2012.722740

Rezaei, 2009, Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites, Mater. Des., 30, 260, 10.1016/j.matdes.2008.05.005

Kitano, 1981, An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, Rheol. Acta, 20, 207, 10.1007/BF01513064

Prager, 1981, The healing process at polymer–polymer interfaces, J. Chem. Phys., 75, 5194, 10.1063/1.441871

Ge, 2014, Healing of polymer interfaces: interfacial dynamics, entanglements, and strength, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys., 90, 10.1103/PhysRevE.90.012602

Sarasua, 2005, Crystallinity and mechanical properties of optically pure polylactides and their blends, Polym. Eng. Sci., 45, 745, 10.1002/pen.20331

Perego, 1996, Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties, J. Appl. Polym. Sci., 59, 37, 10.1002/(SICI)1097-4628(19960103)59:1<37::AID-APP6>3.0.CO;2-N

Liu, 2014, Tailoring crystallization: towards high-performance poly(lactic acid), Adv. Mater., 26, 6905, 10.1002/adma.201305413

Affdl, 1976, The Halpin-Tsai equations: a review, Polym. Eng. Sci., 16, 344, 10.1002/pen.760160512

Shi, 2016, Interfacial diffusion and bonding in multilayer polymer films: a molecular dynamics simulation, J. Phys. Chem. B, 120, 10018, 10.1021/acs.jpcb.6b04471

Rastogi, 2005, Heterogeneity in polymer melts from melting of polymer crystals, Nat. Mater., 4, 635, 10.1038/nmat1437

Boiko, 2001, Healing of interfaces of amorphous and semi-crystalline poly(ethylene terephthalate) in the vicinity of the glass transition temperature, Polymer, 42, 8695, 10.1016/S0032-3861(01)00406-2