Enhancing subthreshold slope and ON-current in a simple iTFET with overlapping gate on source-contact, drain Schottky contact, and intrinsic SiGe-pocket
Tóm tắt
In this paper, we present a new novel simple iTFET with overlapping gate on source-contact (SGO), Drain Schottky Contact, and intrinsic SiGe pocket (Pocket-SGO iTFET). The aim is to achieve steep subthreshold swing (S.S) and high ION current. By optimizing the gate and source-contact overlap, the tunneling efficiency is significantly enhanced, while the ambipolar effect is suppressed. Additionally, using a Schottky contact at the drain/source, instead of ion implantation drain/source, reduces leakage current and thermal budget. Moreover, the tunneling region is replaced by an intrinsic SiGe pocket posing a narrower bandgap, which increases the probability of band-to-band tunneling and enhances the ION current. Our simulations are based on the feasibility of the actual process, thorough Sentaurus TCAD simulations demonstrate that the Pocket-SGO iTFET exhibits an average and minimum subthreshold swing of S.Savg = 16.2 mV/Dec and S.Smin = 4.62 mV/Dec, respectively. At VD = 0.2 V, the ION current is 1.81
$$\times$$
10–6 A/μm, and the ION/IOFF ratio is 1.34
$$\times$$
109. The Pocket-SGO iTFET design shows great potential for ultra-low-power devices that are required for the Internet of Things (IoT) and AI applications.
Tài liệu tham khảo
International roadmap for devices and systems (IRDS): 2022 Edition, 2022. https://irds.ieee.org/editions/2022.
Ilatikhameneh H, Ameen TA, Chen C, Klimeck G, Rahman R. Sensitivity challenge of steep transistors. IEEE Trans Electron Dev. 2018;65(4):1633–9. https://doi.org/10.1109/TED.2018.2808040.
Ni K, et al. Critical role of interlayer in Hf0.5Zr0.5O2 ferroelectric FET nonvolatile memory performance. IEEE Trans Electron Dev. 2018;65(6):2461–9. https://doi.org/10.1109/TED.2018.2829122.
Ghosh B, Akram MW. Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 2013;34(5):584–6. https://doi.org/10.1109/LED.2013.2253752.
Ionescu AM, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 2011;479(7373):329–37. https://doi.org/10.1038/nature10679.
Singh S, Raj B. Vertical tunnel-FET analysis for excessive low power digital applications. In: Proceedings of the international conference on secure cyber computing, communications (ICSCCC), pp. 192–197; 2019. https://doi.org/10.1109/ICSCCC.2018.8703312.
Villalon A et al. First demonstration of strained SiGe nanowires TFETs with ION beyond 700µA/µm. In: Proceedings of the symposium on VLSI technology (VLSI-Technology): digest of technical papers, pp. 1–2; 2014. https://doi.org/10.1109/VLSIT.2014.6894369.
Blaeser S et al. Novel SiGe/Si line tunneling TFET with high Ion at low Vdd and constant SS. In: IEEE international electron devices meeting (IEDM), pp 2231–2234; 2015. https://doi.org/10.1109/IEDM.2015.7409757.
Pandey R et al. Demonstration of p-type In0.7Ga0.3As/GaAs0.35Sb0.65 and n-type GaAs0.4Sb0.6/In0.65Ga0.35As complimentary heterojunction vertical tunnel FETs for Ultra-Low Power Logic. In: Proceedings of the symposium on VLSI technology (VLSI-Technology): digest of technical papers, pp. T206–T207; 2015. https://doi.org/10.1109/VLSIT.2015.7223676.
Dewey G et al. Fabrication, characterization, and physics of III–V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing. In: IEDM technical digest, pp. 3361–3364, 2011. https://doi.org/10.1109/IEDM.2011.6131666.
Zhang H et al. Effect of band-tails on the subthreshold performance of 2D tunnel-FETs. In: IEDM technical digest, pp. 3031–3034 (2016). https://doi.org/10.1109/IEDM.2016.7838512
Nayfeh OM, et al. Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Dev Lett. 2008;29(9):1074–7. https://doi.org/10.1109/LED.2008.2000970.
International roadmap for devices and systems (IRDS): 2018 Edition, 2018.
Wang W, et al. Design of U-shape channel tunnel FETs with SiGe source regions. IEEE Trans Electron Dev. 2014;61(1):193–7. https://doi.org/10.1109/TED.2013.2289075.
Kim SW, Kim JH, Liu T-JK, Choi WY, Park B-G. Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans Electron Dev. 2016;63(4):1774–8. https://doi.org/10.1109/TED.2015.2472496.
Chen S, Wang S, Liu H, Li W, Wang Q, Wang X. Symmetric U-shaped gate tunnel field-effect transistor. IEEE Trans Electron Dev. 2017;64(3):1343–9. https://doi.org/10.1109/TED.2017.2647809.
Morita Y, et al. Performance enhancement of tunnel field-effect transistors by synthetic electric field effect. IEEE Electron Dev Lett. 2014;35(7):792–4. https://doi.org/10.1109/LED.2014.2323337.
Cherik IC, Mohammadi S. Impact of trap-related non-idealities on the performance of a novel TFET-based biosensor with dual doping-less tunneling junction. Sci Rep. 2023;13:11495. https://doi.org/10.1038/s41598-023-38651-3.
Gupta AK, Raman A. Performance analysis of electrostatic plasma-based dopingless nanotube TFET. Appl Phys A. 2020;126:573. https://doi.org/10.1007/s00339-020-03736-7.
Kumar N, Raman A. Novel design approach of extended gate-on-source based charge-plasma vertical-nanowire TFET: proposal and extensive analysis. IEEE Trans Nanotechnol. 2020;19:421–8. https://doi.org/10.1109/TNANO.2020.2993565.
Lin JT, Weng SC. A new line tunneling SiGe/Si iTFET with control gate for leakage suppression and subthreshold swing improvement. Discover Nano. 2023;18:96. https://doi.org/10.1186/s11671-023-03875-9.
Madadi D, Mohammadi S. Switching performance assessment of gate-all-around InAs–Si vertical TFET with triple metal gate, a simulation study. Discover Nano. 2023;18:37. https://doi.org/10.1186/s11671-023-03816-6.
Anam A, Kumar N, Amin SI, Prasad D, Anand S. Charge-plasma based symmetrical-gate complementary electron–hole bilayer TFET with improved performance for sub-0.5 V operation. Semicond Sci Technol. 2023. https://doi.org/10.1088/1361-6641/aca7db.
Jin X, Zhang S, Li M, Liu X, Li M. A novel high-low-high Schottky barrier based bidirectional tunnel field effect transistor. Heliyon. 2023;9(3):e138092023. https://doi.org/10.1016/j.heliyon.2023.e13809.
Larson JM, Snyder JP. Overview and status of metal S/D Schottky–Barrier MOSFET technology. IEEE Trans Electron Dev. 2006;53(5):1048–58. https://doi.org/10.1109/TED.2006.871842.
Liu Xi, Li M, Li M, Zhang S, Jin X. Structural optimized H-gate high Schottky Barrier bidirectional tunnel field effect transistor. ACS Appl Electron Mater. 2023;5(5):2738–47. https://doi.org/10.1021/acsaelm.3c00216.
Liu X, Li M, Wu M, Zhang S, Jin X. A highly sensitive vertical plug-in source drain high Schottky barrier bilateral gate controlled bidirectional tunnel field effect transistor. PLoS ONE. 2023;18(5):e0285320. https://doi.org/10.1371/journal.pone.0285320.
Liu X, Ma K, Wang Y, Wu M, Lee J-H, Jin X. A novel high Schottky Barrier based bilateral gate and assistant gate controlled bidirectional tunnel field effect transistor. IEEE J Electron Dev Soc. 2020;8:976–80. https://doi.org/10.1109/JEDS.2020.3020920.
Sentaurus Device Users’ Mannual.Version D-2020.03, Synopsys Inc. Mountain View, CA, USA (2020)
Anvarifard MK, Orouji AA. Energy band adjustment in a reliable novel charge plasma sige source TFET to intensify the BTBT rate. IEEE Trans Electron Dev. 2021;68(10):5284–90. https://doi.org/10.1109/TED.2021.3106891.
Schmidt M, et al. Line and point tunneling in scaled Si/SiGe heterostructure TFETs. IEEE Electron Dev Lett. 2014;35(7):699–701. https://doi.org/10.1109/LED.2014.2320273.
Kasper E, Herzog HJ, Kibbel H. A one-dimensional SiGe superlattice grown by UHV epitaxy. Appl Phys. 1975;8:199–205. https://doi.org/10.1007/BF00896611.
Bhat TS, et al. Abnormal silicon-germanium (SiGe) epitaxial growth in FinFETs. IEEE Trans Semicond Manuf. 2020;33(2):291–4. https://doi.org/10.1109/TSM.2020.2976123.
Lin J-T, Wang T-C, Lee W-H, Yeh C-T, Glass S, Zhao Q-T. Characteristics of recessed-gate TFETs with line tunneling. IEEE Trans Electron Dev. 2018;65(2):769–75. https://doi.org/10.1109/TED.2017.2786215.
Nam Y, Cho MH, Shin C. Symmetric tunnel field-effect transistor (S-TFET). Curr Appl Phys. 2015;15(2):71–7. https://doi.org/10.1016/j.cap.2014.11.006.
Wang X, Tang Z, Cao L, Li J, Liu Y. Gate field plate structure for subthreshold swing improvement of Si line-tunneling FETs. IEEE Access. 2019;7:100675–83. https://doi.org/10.1109/ACCESS.2019.2928692.