Enhancing microaerobic plasmid DNA production by chromosomal expression of Vitreoscilla hemoglobin in E. coli
Tài liệu tham khảo
Ma, 2020, The approved gene therapy drugs worldwide: from 1998 to 2019, Biotechnol. Adv., 40, 107502, 10.1016/j.biotechadv.2019.107502
2020
Rozkov, 2008, Large-scale production of endotoxin-free plasmids for transient expression in mammalian cell culture, Biotechnol. Bioeng., 99, 557, 10.1002/bit.21603
Williams, 2009, Generic plasmid DNA production platform incorporating low metabolic burden seed-stock and fed-batch fermentation processes, Biotechnol. Bioeng., 103, 1129, 10.1002/bit.22347
Palomares, 2010, Bioreactor scale-down
Jaén, 2017, Heterogeneous oxygen availability affects the titer and topology but not the fidelity of plasmid DNA produced by Escherichia coli, BMC Biotechnol., 17, 60, 10.1186/s12896-017-0378-x
Namdev, 1993, Effect of oxygen fluctuations on recombinant Escherichia coli fermentation, Biotechnol. Bioeng., 41, 666, 10.1002/bit.260410610
Hopkins, 1987, Effects of dissolved oxygen shock on the stability of recombinant Escherichia coli containing plasmid pKN401, Biotechnol. Bioeng., 29, 85, 10.1002/bit.260290113
Grunzel, 2014, Mini-scale cultivation method enables expeditious plasmid production in Escherichia coli, Biotechnol. J., 9, 128, 10.1002/biot.201300177
Takors, 2012, Scale-up of microbial processes: impacts, tools and open questions, J. Biotechnol., 160, 3, 10.1016/j.jbiotec.2011.12.010
Passarinha, 2006, Production of ColE1 type plasmid by Escherichia coli DH5α cultured under nonselective conditions, J. Microbiol. Biotechnol., 16, 20
Lara, 2019, Effect of the oxygen transfer rate on oxygen-limited production of plasmid DNA by Escherichia coli, Biochem. Eng. J., 150, 107303, 10.1016/j.bej.2019.107303
Veeravalli, 2018, Strain engineering to reduce acetate accumulation during microaerobic growth conditions in Escherichia coli, Biotechnol. Prog., 34, 303, 10.1002/btpr.2592
Jaén, 2019, Engineering E. coli for improved microaerobic pDNA production, Bioproc. Biosyst. Eng., 42, 1457, 10.1007/s00449-019-02142-5
Stark, 2015, Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation, Appl. Microbiol. Biotechnol., 99, 1627, 10.1007/s00253-014-6350-y
Stark, 2012, The biochemistry of Vitreoscilla hemoglobin, Comput. Struct. Biotechnol. J., 3, 1, 10.5936/csbj.201210002
Roca, 1997, RecA protein: structure, function, and role in recombinational DNA repair, Prog. Nucleic Acid Res. Mol. Biol., 56, 129, 10.1016/S0079-6603(08)61005-3
Guidance for Industry, 2007
Jaén, 2019, Design of a microaerobically inducible replicon for high-yield plasmid DNA production, Biotechnol. Bioeng., 116, 2514, 10.1002/bit.27091
Pablos, 2014, Aerobic expression of Vitreoscilla hemoglobin efficiently reduces overflow metabolism in Escherichia coli, Biotechnol. J., 9, 791, 10.1002/biot.201300388
De Mey, 2007, Minimizing acetate formation in E. coli fermentations, J. Ind. Microbiol. Biotechnol., 34, 689, 10.1007/s10295-007-0244-2
Ponce, 1999, Effect of growth rate reduction and genetic modifications on acetate accumulation and biomass yields in Escherichia coli, J. Biosci. Bioeng., 87, 775, 10.1016/S1389-1723(99)80152-2
Cunningham, 2009, Pyruvate kinase-deficient Escherichia coli exhibits increased plasmid copy number and cyclic AMP levels, J. Bacteriol., 191, 3041, 10.1128/JB.01422-08
Meza, 2012, Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli, Microb. Cell Fact., 11, 127, 10.1186/1475-2859-11-127
Wunderlich, 2014, Effect of growth rate on plasmid DNA production and metabolic performance of engineered Escherichia coli strains, J. Biosci. Bioeng., 117, 336, 10.1016/j.jbiosc.2013.08.007
Pablos, 2012, Enhanced production of plasmid DNA by engineered Escherichia coli strains, J. Biotechnol., 158, 211, 10.1016/j.jbiotec.2011.04.015
Lara, 2020, Physiological responses of Escherichia coli W3110 and BL21 to the aerobic expression of Vitreoscilla hemoglobin, J. Microbiol. Biotechnol., 30, 1592, 10.4014/jmb.2004.04030
Enayati, 1999, Production of α‐amylase in fed‐batch cultures of vgb+ and vgb− recombinant Escherichia coli: some observations, Biotechnol. Prog., 15, 640, 10.1021/bp9900716
Cullis, 1992, Energy coupling in DNA gyrase: a thermodynamic limit to the extent of DNA supercoiling, Biochemistry, 31, 9642, 10.1021/bi00155a017
Frey, 2001, Dissection of central carbon metabolism of hemoglobin-expressing Escherichia coli by 13C nuclear magnetic resonance flux distribution analysis in microaerobic bioprocesses, Appl. Environ. Microbiol., 67, 680, 10.1128/AEM.67.2.680-687.2001
Tsai, 1996, Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism, Biotechnol. Bioeng., 49, 139, 10.1002/(SICI)1097-0290(19960120)49:2<139::AID-BIT3>3.0.CO;2-R
Kwon, 2003, High-level production of porphyrins in metabolically engineered Escherichia coli: systematic extension of a pathway assembled from overexpressed genes involved in heme biosynthesis, Appl. Environ. Microbiol., 69, 4875, 10.1128/AEM.69.8.4875-4883.2003
Cunningham, 2009, Factors affecting plasmid production in Escherichia coli from a resource allocation standpoint, Microb. Cell Fact., 8, 27, 10.1186/1475-2859-8-27
Flores, 2004, Growth-rate recovery of Escherichia coli cultures carrying a multicopy plasmid, by engineering of the pentose-phosphate pathway, Biotechnol. Bioeng., 87, 485, 10.1002/bit.20137
Goncalves, 2013, De novo creation of MG1655-derived E. coli strains specifically designed for plasmid DNA production, Appl. Microbiol. Biotechnol., 97, 611, 10.1007/s00253-012-4308-5
Pilarek, 2013, Enhanced plasmid production in miniaturized high-cell-density cultures of Escherichia coli supported with perfluorinated oxygen carrier, Bioproc. Biosyst. Eng., 36, 1079, 10.1007/s00449-012-0861-7
del Solar, 2000, Plasmid copy number control: an ever‐growing story, Mol. Microbiol., 37, 492, 10.1046/j.1365-2958.2000.02005.x
Freudenau, 2015, ColE1‐plasmid production in Escherichia coli: mathematical simulation and experimental validation, Front. Bioeng. Biotech., 127, 1