Enhancing gene expression programming based on space partition and jump for symbolic regression

Information Sciences - Tập 547 - Trang 553-567 - 2021
Qiang Lu1, Shuo Zhou1, Fan Tao1, Jake Luo2, Zhiguang Wang1
1Beijing Key Laboratory of Petroleum Data Mining, China University of Petroleum-Beijing, Beijing, China
2Department of Health Sciences and Administration, University of Wisconsin Milwaukee, Milwaukee, WI, United States

Tài liệu tham khảo

Koza, 1994, Genetic programming as a means for programming computers by natural selection, Stat. Comput., 4, 87, 10.1007/BF00175355 McKay, 2010, Grammar-based genetic programming: a survey, Genet. Program Evolvable Mach., 11, 365, 10.1007/s10710-010-9109-y Lu, 2016, Using genetic programming with prior formula knowledge to solve symbolic regression problem, Comput. Intell. Neurosci., 1, 1 A. Moraglio, K. Krawiec, C.G. Johnson, Geometric Semantic Genetic Programming, in: Parallel Problem Solving from Nature - PPSN XII, Vol. 7491, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 21–31. Chen, 2019, Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators, IEEE Trans. Evol. Comput., 23, 488, 10.1109/TEVC.2018.2869621 Schmidt, 2007, Comparison of tree and graph encodings as function of problem complexity, 1674 Schmidt, 2009, Distilling free-form natural laws from experimental data, Science, 324, 81, 10.1126/science.1165893 Miller, 2008, Cartesian Genetic Programming, 2701 Miller, 2019, Cartesian genetic programming: its status and future, Genet. Program Evolvable Mach., 1 Ferreira, 2001, Gene expression programming: a new adaptive algorithm for solving problems, Complex Syst., 13, 87 Ferreira, 2006, Automatically defined functions in gene expression programming, 21 Zhong, 2016, Self-learning gene expression programming, IEEE Trans. Evol. Comput., 20, 65, 10.1109/TEVC.2015.2424410 Brameier, 2007 Leung, 1997, Degree of population diversity: a perspective on premature convergence in genetic algorithms and its markov chain analysis, IEEE Trans. Neural Networks, 8, 1165, 10.1109/72.623217 M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and Exploitation in Evolutionary Algorithms: A Survey, ACM Comput. Surv. 45 (3) (2013) 35:1–35:33. doi:10.1145/2480741.2480752. Burke, 2004, Diversity in genetic programming: an analysis of measures and correlation with fitness, IEEE Trans. Evol. Comput., 8, 47, 10.1109/TEVC.2003.819263 D. Sudholt, The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses. http://arxiv.org/abs/1801.10087. Karafotias, 2015, Parameter control in evolutionary algorithms: trends and challenges, IEEE Trans. Evol. Comput., 19, 167, 10.1109/TEVC.2014.2308294 Smith, 1995, Adaptively resizing populations: algorithm, analysis, and first results, Complex Systems, 9, 47 G.R. Harik, F.G. Lobo, A Parameter-less Genetic Algorithm, in: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1, GECCO’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999, pp. 258–265. Eshelman, 1991, 115 Wang, 2012, Enhancing the search ability of differential evolution through orthogonal crossover, Inf. Sci., 185, 153, 10.1016/j.ins.2011.09.001 Sibylle D. Mfiller, Nicol N. Schraudolph, Petros D. Koumoutsakos, Step size adaptation in evolution strategies using reinforcement learning, in: Congress on Evolutionary Computation, Vol. 1, IEEE, 2002, pp. 151–156. doi:10.1109/CEC.2002.1006225. Badran, 2007, The Roles of Diversity Preservation and Mutation in Preventing Population Collapse in Multiobjective Genetic Programming, 1551 S.Y. Yuen, C.K. Chow, A non-revisiting genetic algorithm, in: IEEE Congress on Evolutionary Computation, 2007, pp. 4583–4590. doi:10.1109/CEC.2007.4425072. Yuen, 2009, A genetic algorithm that adaptively mutates and never revisits, IEEE Trans. Evol. Comput., 13, 454, 10.1109/TEVC.2008.2003008 Chow, 2011, An evolutionary algorithm that makes decision based on the entire previous search history, IEEE Trans. Evol. Comput., 15, 741, 10.1109/TEVC.2010.2040180 Gong, 2015, Distributed evolutionary algorithms and their models: a survey of the state-of-the-art, Appl. Soft Comput., 34, 286, 10.1016/j.asoc.2015.04.061 Whitley, 1997, Island model genetic algorithms and linearly separable problems, 109, 10.1007/BFb0027170 Alba, 2008 Auer, 2002, Finite-time analysis of the multiarmed bandit problem, Mach. Learn., 47, 235, 10.1023/A:1013689704352 Sutton, 2018 Zhong, 2016, Self-learning gene expression programming, IEEE Trans. Evol. Comput., 20, 65, 10.1109/TEVC.2015.2424410 Katehakis, 1987, The multi-armed bandit problem: decomposition and computation, Math. Operations Res., 12, 262, 10.1287/moor.12.2.262 Zhi-xiong Xu, Xi-liang Chen, Lei Cao, Chen-xi Li, A study of count-based exploration and bonus for reinforcement learning, International Conference on Cloud Computing and Big Data Analysis (2017) 425–429doi:10.1109/ICCCBDA.2017.7951951. Cesa-Bianchi, 2017, Boltzmann exploration done right, 6284 X. Li, W. Zhou, Chiand Xiao, P.C. Nelson, Prefix gene expression programming, Genetic and Evolutionary Computation Conf. (2005) 55–31. Jonathan Mwaura, Ed Keedwell, Adaptive gene expression programming using a simple feedback heuristic (2009) 6. M.W. David. Powers, Applications and explanations of zipf’s law, in: Proceedings of the joint conferences on new methods in language processing and computational natural language learning, 1998, pp. 151–160. McDermott, 2012, Genetic programming needs better benchmarks, ACM Press, 791 Korns, 2011, Accuracy in symbolic regression, 129 Maarten Keijzer, Improving symbolic regression with interval arithmetic and linear scaling, in: Genetic Programming, Vol. 2610, Springer, Berlin Heidelberg, 2003, pp. 70–82. doi:10.1007/3-540-36599-0-7. Vladislavleva, 2009, Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming, IEEE Trans. Evol. Comput., 13, 333, 10.1109/TEVC.2008.926486 Wilcoxon, 1994, Individual comparisons by ranking methods, Biometrics Bulletin, 1, 80 Herrera, 2000, Gradual distributed real-coded genetic algorithms, IEEE Trans. Evol. Comput., 4, 43, 10.1109/4235.843494 D. Bernabé, T. Marco, G. Mario, A. Enrique, Decentralized cellular evolutionary algorithms, in: Handbook of Bioinspired Algorithms and Applications, Chapman and Hall/CRC, 2005, pp. 121–138. Folino, 2008, Training distributed GP ensemble with a selective algorithm based on clustering and pruning for pattern classification, IEEE Trans. Evol. Comput., 12, 458, 10.1109/TEVC.2007.906658 Roy, 2009, A distributed pool architecture for genetic algorithms, 1177 Tsutsui, 1997, Forking genetic algorithms: Gas with search space division schemes, Evol. Comput., 5, 61, 10.1162/evco.1997.5.1.61 Huang, 2013, A space search optimization algorithm with accelerated convergence strategies, Appl. Soft Comput., 13, 4659, 10.1016/j.asoc.2013.06.005