Enhancing gene expression programming based on space partition and jump for symbolic regression
Tài liệu tham khảo
Koza, 1994, Genetic programming as a means for programming computers by natural selection, Stat. Comput., 4, 87, 10.1007/BF00175355
McKay, 2010, Grammar-based genetic programming: a survey, Genet. Program Evolvable Mach., 11, 365, 10.1007/s10710-010-9109-y
Lu, 2016, Using genetic programming with prior formula knowledge to solve symbolic regression problem, Comput. Intell. Neurosci., 1, 1
A. Moraglio, K. Krawiec, C.G. Johnson, Geometric Semantic Genetic Programming, in: Parallel Problem Solving from Nature - PPSN XII, Vol. 7491, Springer, Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 21–31.
Chen, 2019, Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators, IEEE Trans. Evol. Comput., 23, 488, 10.1109/TEVC.2018.2869621
Schmidt, 2007, Comparison of tree and graph encodings as function of problem complexity, 1674
Schmidt, 2009, Distilling free-form natural laws from experimental data, Science, 324, 81, 10.1126/science.1165893
Miller, 2008, Cartesian Genetic Programming, 2701
Miller, 2019, Cartesian genetic programming: its status and future, Genet. Program Evolvable Mach., 1
Ferreira, 2001, Gene expression programming: a new adaptive algorithm for solving problems, Complex Syst., 13, 87
Ferreira, 2006, Automatically defined functions in gene expression programming, 21
Zhong, 2016, Self-learning gene expression programming, IEEE Trans. Evol. Comput., 20, 65, 10.1109/TEVC.2015.2424410
Brameier, 2007
Leung, 1997, Degree of population diversity: a perspective on premature convergence in genetic algorithms and its markov chain analysis, IEEE Trans. Neural Networks, 8, 1165, 10.1109/72.623217
M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and Exploitation in Evolutionary Algorithms: A Survey, ACM Comput. Surv. 45 (3) (2013) 35:1–35:33. doi:10.1145/2480741.2480752.
Burke, 2004, Diversity in genetic programming: an analysis of measures and correlation with fitness, IEEE Trans. Evol. Comput., 8, 47, 10.1109/TEVC.2003.819263
D. Sudholt, The Benefits of Population Diversity in Evolutionary Algorithms: A Survey of Rigorous Runtime Analyses. http://arxiv.org/abs/1801.10087.
Karafotias, 2015, Parameter control in evolutionary algorithms: trends and challenges, IEEE Trans. Evol. Comput., 19, 167, 10.1109/TEVC.2014.2308294
Smith, 1995, Adaptively resizing populations: algorithm, analysis, and first results, Complex Systems, 9, 47
G.R. Harik, F.G. Lobo, A Parameter-less Genetic Algorithm, in: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation - Volume 1, GECCO’99, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999, pp. 258–265.
Eshelman, 1991, 115
Wang, 2012, Enhancing the search ability of differential evolution through orthogonal crossover, Inf. Sci., 185, 153, 10.1016/j.ins.2011.09.001
Sibylle D. Mfiller, Nicol N. Schraudolph, Petros D. Koumoutsakos, Step size adaptation in evolution strategies using reinforcement learning, in: Congress on Evolutionary Computation, Vol. 1, IEEE, 2002, pp. 151–156. doi:10.1109/CEC.2002.1006225.
Badran, 2007, The Roles of Diversity Preservation and Mutation in Preventing Population Collapse in Multiobjective Genetic Programming, 1551
S.Y. Yuen, C.K. Chow, A non-revisiting genetic algorithm, in: IEEE Congress on Evolutionary Computation, 2007, pp. 4583–4590. doi:10.1109/CEC.2007.4425072.
Yuen, 2009, A genetic algorithm that adaptively mutates and never revisits, IEEE Trans. Evol. Comput., 13, 454, 10.1109/TEVC.2008.2003008
Chow, 2011, An evolutionary algorithm that makes decision based on the entire previous search history, IEEE Trans. Evol. Comput., 15, 741, 10.1109/TEVC.2010.2040180
Gong, 2015, Distributed evolutionary algorithms and their models: a survey of the state-of-the-art, Appl. Soft Comput., 34, 286, 10.1016/j.asoc.2015.04.061
Whitley, 1997, Island model genetic algorithms and linearly separable problems, 109, 10.1007/BFb0027170
Alba, 2008
Auer, 2002, Finite-time analysis of the multiarmed bandit problem, Mach. Learn., 47, 235, 10.1023/A:1013689704352
Sutton, 2018
Zhong, 2016, Self-learning gene expression programming, IEEE Trans. Evol. Comput., 20, 65, 10.1109/TEVC.2015.2424410
Katehakis, 1987, The multi-armed bandit problem: decomposition and computation, Math. Operations Res., 12, 262, 10.1287/moor.12.2.262
Zhi-xiong Xu, Xi-liang Chen, Lei Cao, Chen-xi Li, A study of count-based exploration and bonus for reinforcement learning, International Conference on Cloud Computing and Big Data Analysis (2017) 425–429doi:10.1109/ICCCBDA.2017.7951951.
Cesa-Bianchi, 2017, Boltzmann exploration done right, 6284
X. Li, W. Zhou, Chiand Xiao, P.C. Nelson, Prefix gene expression programming, Genetic and Evolutionary Computation Conf. (2005) 55–31.
Jonathan Mwaura, Ed Keedwell, Adaptive gene expression programming using a simple feedback heuristic (2009) 6.
M.W. David. Powers, Applications and explanations of zipf’s law, in: Proceedings of the joint conferences on new methods in language processing and computational natural language learning, 1998, pp. 151–160.
McDermott, 2012, Genetic programming needs better benchmarks, ACM Press, 791
Korns, 2011, Accuracy in symbolic regression, 129
Maarten Keijzer, Improving symbolic regression with interval arithmetic and linear scaling, in: Genetic Programming, Vol. 2610, Springer, Berlin Heidelberg, 2003, pp. 70–82. doi:10.1007/3-540-36599-0-7.
Vladislavleva, 2009, Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming, IEEE Trans. Evol. Comput., 13, 333, 10.1109/TEVC.2008.926486
Wilcoxon, 1994, Individual comparisons by ranking methods, Biometrics Bulletin, 1, 80
Herrera, 2000, Gradual distributed real-coded genetic algorithms, IEEE Trans. Evol. Comput., 4, 43, 10.1109/4235.843494
D. Bernabé, T. Marco, G. Mario, A. Enrique, Decentralized cellular evolutionary algorithms, in: Handbook of Bioinspired Algorithms and Applications, Chapman and Hall/CRC, 2005, pp. 121–138.
Folino, 2008, Training distributed GP ensemble with a selective algorithm based on clustering and pruning for pattern classification, IEEE Trans. Evol. Comput., 12, 458, 10.1109/TEVC.2007.906658
Roy, 2009, A distributed pool architecture for genetic algorithms, 1177
Tsutsui, 1997, Forking genetic algorithms: Gas with search space division schemes, Evol. Comput., 5, 61, 10.1162/evco.1997.5.1.61
Huang, 2013, A space search optimization algorithm with accelerated convergence strategies, Appl. Soft Comput., 13, 4659, 10.1016/j.asoc.2013.06.005