Nâng cao phản ứng cơ học của magie đơn giản bằng việc sử dụng hạt nano-NiTi (Nitinol)
Tóm tắt
Nghiên cứu hiện tại tập trung vào việc điều tra tác động của hạt vi mô Nickel-Titanium (NiTi) đến cấu trúc vi mô và tính chất của magie tinh khiết. Các hợp chất magie chứa tỷ lệ phần trăm trọng lượng khác nhau (0.5, 1, 1.5, 3) của hạt nano NiTi đã được chế tạo bằng phương pháp Lắng đọng nóng bị phá vỡ (DMD), sau đó là ép nóng. Các vật liệu tổng hợp được đặc trưng để nghiên cứu tính chất vật lý, cấu trúc vi mô và cơ học của chúng. Các vật liệu tổng hợp được đặc trưng về mức độ mật độ và độ xốp, đặc trưng cấu trúc vi mô, và phản ứng cơ học. Sự tinh chỉnh hạt vượt trội đã được thực hiện nhờ vào sự hiện diện của hạt nano NiTi trong ma trận magie. Sự bổ sung hạt nano NiTi dẫn đến việc cải thiện sức mạnh của magie tinh khiết với tác động bất lợi tối thiểu lên độ dẻo. Các đánh giá cấu trúc - tính chất đã được chi tiết trong nghiên cứu hiện tại.
Từ khóa
#Nickel-Titanium #magnesium composites #nanoparticle effects #microstructure characterization #mechanical propertiesTài liệu tham khảo
Guo, 2019, Achieving high-strength magnesium matrix nanocomposite through synergistical effect of external hybrid (sic+tic) nanoparticles and dynamic precipitated phase, J. Alloys Compd., 771, 847, 10.1016/j.jallcom.2018.09.030
Manakari, V., Parande, G., and Gupta, M. (2016). Selective laser melting of magnesium and magnesium alloy powders: A review. Metals, 7.
Tekumalla, 2014, Mechanical properties of magnesium-rare earth alloy systems: A review, Metals, 5, 1, 10.3390/met5010001
Bohlen, 2010, Effect of rare earth elements on the microstructure and texture development in magnesium–manganese alloys during extrusion, Mater. Sci. Eng. A, 527, 7092, 10.1016/j.msea.2010.07.081
Atrens, 2015, Review of recent developments in the field of magnesium corrosion, Adv. Eng. Mater., 17, 400, 10.1002/adem.201400434
Liu, 2012, The ignition temperature of mg alloys WE43, AZ31 and AZ91, Corros. Sci., 54, 139, 10.1016/j.corsci.2011.09.004
Parande, 2017, Utilizing low-cost eggshell particles to enhance the mechanical response of Mg-2.5Zn magnesium alloy matrix, Adv. Eng. Mater., 20, 1700919, 10.1002/adem.201700919
Huang, S.-J., Lin, C.-C., Huang, J.-Y., and Tenne, R. (2018). Mechanical behavior enhancement of AZ31/WS2 and AZ61/WS2 magnesium metal matrix nanocomposites. Adv. Mech. Eng., 10.
Guo, 2018, The influence of nanoparticles on dendritic grain growth in mg alloys, Acta Mater., 152, 127, 10.1016/j.actamat.2018.04.023
Du, 2018, Ultra-high strengthening efficiency of graphene nanoplatelets reinforced magnesium matrix composites, Mater. Sci. Eng. A, 711, 633, 10.1016/j.msea.2017.11.040
Goh, 2005, Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique, Nanotechnology, 17, 7, 10.1088/0957-4484/17/1/002
Parande, 2017, Using lanthanum to enhance the overall ignition, hardness, tensile and compressive strengths of Mg-0.5Zr alloy, J. Rare Earths, 35, 723, 10.1016/S1002-0721(17)60969-4
Manakari, V., Parande, G., Doddamani, M., and Gupta, M. (2017). Enhancing the ignition, hardness and compressive response of magnesium by reinforcing with hollow glass microballoons. Materials, 10.
Tun, K., Zhang, Y., Parande, G., Manakari, V., and Gupta, M. (2018). Enhancing the hardness and compressive response of magnesium using complex composition alloy reinforcement. Metals, 8.
Parande, G., Manakari, V., Gupta, H., and Gupta, M. (2018). Magnesium-β-tricalcium phosphate composites as a potential orthopedic implant: A mechanical/damping/immersion perspective. Metals, 8.
Jayalakshmi, 2014, Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response, Mater. Design, 53, 849, 10.1016/j.matdes.2013.07.022
Gupta, M., Parande, G., and Manakari, V. (2017, January 26–28). An insight into high performance magnesium alloy/nano-metastable-syntactic composites. Proceedings of the 17th Australian International Aerospace Congress, Melbourne, Australia.
Parande, 2017, Enhancing the tensile and ignition response of monolithic magnesium by reinforcing with silica nanoparticulates, J. Mater. Res., 32, 2169, 10.1557/jmr.2017.194
Meenashisundaram, 2016, Emerging environment friendly, magnesium-based composite technology for present and future generations, JOM, 68, 1890, 10.1007/s11837-016-1823-3
Gupta, 2015, Magnesium-based nanocomposites: Lightweight materials of the future, Mater. Charact., 105, 30, 10.1016/j.matchar.2015.04.015
Kaviti, 2018, Investigation on dry sliding wear behavior of Mg/Bn nanocomposites, J. Mag. Alloys., 6, 263, 10.1016/j.jma.2018.05.005
Kujur, M.S., Mallick, A., Manakari, V., Parande, G., Tun, K.S., and Gupta, M. (2017). Significantly enhancing the ignition/compression/damping response of monolithic magnesium by addition of Sm2O3 nanoparticles. Metals, 7.
Kujur, 2018, Enhancement of thermal, mechanical, ignition and damping response of magnesium using nano-ceria particles, Ceram. Int., 44, 15035, 10.1016/j.ceramint.2018.05.133
Chakif, 2014, Generation of niti nanoparticles by femtosecond laser ablation in liquid, J. Mater. Eng. Perform., 23, 2482, 10.1007/s11665-014-1007-7
Huang, 2002, On the selection of shape memory alloys for actuators, Mater. Des., 23, 11, 10.1016/S0261-3069(01)00039-5
Guo, 2015, Development of a high-damping NiTi shape-memory-alloy-based composite, Mater. Lett., 158, 1, 10.1016/j.matlet.2015.05.143
Salvetr, 2017, Investigation of the effect of magnesium on the microstructure and mechanical properties of niti shape memory alloy prepared by self-propagating high-temperature synthesis, Metall. Mater. Trans. A, 48, 3559, 10.1007/s11661-017-4105-y
Kadkhodaei, 2018, Modeling the cyclic shape memory and superelasticity of selective laser melting fabricated NiTi, Int. J. Mech. Sci., 138–139, 54
Taylor, 2018, NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering, Acta Biomater., 76, 359, 10.1016/j.actbio.2018.06.015
Hao, 2014, A novel multifunctional NiTi/Ag hierarchical composite, Sci. Rep., 4, 5267, 10.1038/srep05267
Yuan, B., Zhu, M., and Chung, C.Y. (2018). Biomedical porous shape memory alloys for hard-tissue replacement materials. Materials, 11.
Andani, 2014, Metals for bone implants. Part 1. Powder metallurgy and implant rendering, Acta Biomater., 10, 4058, 10.1016/j.actbio.2014.06.025
Elahinia, 2012, Manufacturing and processing of NiTi implants: A review, Progr. Mater. Sci., 57, 911, 10.1016/j.pmatsci.2011.11.001
Reed-Hill, R.E., Abbaschian, R., and Abbaschian, R. (1973). Physical Metallurgy Principles, Cengage Learning.
Robson, 2009, Particle effects on recrystallization in magnesium–manganese alloys: Particle-stimulated nucleation, Acta Mater., 57, 2739, 10.1016/j.actamat.2009.02.032
Salvetr, 2017, Effect of magnesium addition on the structural homogeneity of NiTi alloy produced by self-propagating high-temperature synthesis, Kovove Mater.-Metall. Mater., 55, 379
Turner, P.S. (1942). The Problem of Thermal-Expansion Stresses in Reinforced Plastics, NACA.
Stanford, M.K. (2012). Thermophysical Properties of 60-Nitinol for Mechanical Component Applications.
Stanford, M.K. (2016). Hardness and Microstructure of Binary and Ternary Nitinol Compounds.
Aboudzadeh, N., Dehghanian, C., and Shokrgozar, M. (2017). Synthesis, microstructure and mechanical properties of Mg. 5Zn. 0.3 Ca/nHa nanocomposites. Iran. J. Mater. Sci. Eng., 14.
Cabbibo, 2007, Strengthening in a WE54 magnesium alloy containing SiC particles, Mater. Sci. Eng. A, 462, 225, 10.1016/j.msea.2006.01.182
Choi, 2005, Nanocomposites—A new material design concept, Sci. Technol. Adv. Mater., 6, 2, 10.1016/j.stam.2004.06.002
Yuan, 2017, Microstructure and mechanical properties of Mg-4.0Zn alloy reinforced by NiO-coated CNTs, J. Mater. Sci. Technol., 33, 452, 10.1016/j.jmst.2016.07.022
2012, Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of hall–petch effect, Mater. Sci. Eng. A, 531, 112, 10.1016/j.msea.2011.10.043
Sankaranarayanan, 2014, Nano-zno particle addition to monolithic magnesium for enhanced tensile and compressive response, J. Alloys Compd., 615, 211, 10.1016/j.jallcom.2014.06.163
Sankaranarayanan, 2014, Effect of nanoscale boron carbide particle addition on the microstructural evolution and mechanical response of pure magnesium, Mater. Design, 56, 428, 10.1016/j.matdes.2013.11.031