Enhancing Electromagnetic Field Over Resistive Offshore Hydrocarbon Using Synthetic Conduction Current Incurvature
Tóm tắt
Từ khóa
Tài liệu tham khảo
Eidesmo, T.; Ellingsrud, S.; MacGregor, L.; Constable, S.; Sinha, M.; Johansen, S., et al.: Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas. First Break 20 (2002)
Edwards, N.: Marine controlled source electromagnetics: principles, methodologies, future commercial applications. Surv. Geophys. 26, 675–700 (2005)
Constable, S.; Srnka, L.J.: An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration. Geophysics 72, WA3–WA12 (2007)
Hesthammer, J.; Stefatos, A.; Boulaenko, M.; Vereshagin, A.; Gelting, P.; Wedberg, T., et al.: CSEM technology as a value driver for hydrocarbon exploration. Mar. Pet. Geol. 27, 1872–1884 (2010)
Constable, S.: Ten years of marine CSEM for hydrocarbon exploration. Geophysics 75, 75A67-75A81 (2010)
Constable, S.: Instrumentation for marine magnetotelluric and controlled source electromagnetic sounding. Geophys. Prospect. 61, 505–532 (2013)
Hesthammer, J.; Stefatos, A.; Boulaenko, M.; Fanavoll, S.; Danielsen, J.: CSEM performance in light of well results. Lead. Edge 29, 34–41 (2010)
Yu, P.; Luo, X.; Wang, D.; Deng, M.; Wang, M.; Chen, K. et al.: The analysis on marine controlled-source electromagnetic research status. In: IOP Conference Series: Earth and Environmental Science 052022 (2019)
Stefatos, A.; Boulaenko, M.; Hesthammer, J.: Marine CSEM technology performance in hydrocarbon exploration-limitations or opportunities?. First Break 27 (2009)
Hansen, K.; Morten, J.: Uncertainty analysis of airwave mitigation methods for marine CSEM Data. In: 81st EAGE Conference and Exhibition 1–5 (2019)
Wang, S.-M.; Di, Q.-Y.; Wang, R.; Wang, X.-M.; Su, X.-L.; Wang, P.-F.: Removal of the airwave effect by main-part decomposition of the anomalous field of MCSEM data. Appl. Geophys. 15, 3–10 (2018)
Um, E.S.; Alumbaug, D.L.: On the physics of the marine controlled-source electromagnetic method. Geophysics 72, WA13–WA26 (2007)
Daud, H.; Mohd Aris, M.N.; Mohd Noh, K.A.; Dass, S.C.: A novel methodology for hydrocarbon depth prediction in seabed logging: gaussian process-based inverse modeling of electromagnetic data. Appl. Sci. 11, 1492 (2021)
Johansen, S.; Amundsen, H.; Røsten, T.; Ellingsrud, S.; Eidesmo, T.; Bhuiyan, A.: Subsurface hydrocarbons detected by electromagnetic sounding. First Break 23, 31–36 (2005)
Hesthammer, J.; Stefatos, A.: The performance of CSEM as a de-risking tool in oil and gas exploration. In: SEG Technical Program Expanded Abstracts 2010, ed: Society of Exploration Geophysicists 675–679 (2010)
Bekker, R.; Danielsen, J.: The future of marine CSEM. First Break 29, 77–81 (2011)
MacGregor, L.; Tompkins, M.: Imaging hydrocarbon reservoirs using marine controlled-source electromagnetic sounding. In: Offshore Technology Conference (2005)
Weiss, C.J.: The fallacy of the “shallow-water problem” in marine CSEM exploration. Geophysics 72, A93–A97 (2007)
Orange, A.; Key, K.; Constable, S.: The feasibility of reservoir monitoring using time-lapse marine CSEM. Geophysics 74, F21–F29 (2009)
Rostami, A.; Soleimani, H.; Yahya, N.; Nyamasvisva, T.E.; Rauf, M.: The impact of airwave on tangential and normal components of electric field in seabed logging data. In: AIP Conference Proceeding 060006 (2016)
Rostami, A.; Yahaya, N.; Soleimani, H.; Rauf, M.; Nyamasvisva, T.E.; Shafie, A., et al.: Source modification for efficiency enhancement of marine controlled-source electromagnetic method. J. Geophys. Eng. 18, gxab011 (2021)
Chen, J.; Alumbaugh, D.L.: Three methods for mitigating airwaves in shallow water marine controlled-source electromagnetic data. Geophysics 76, F89–F99 (2011)
Nyamasvisva, T.E.; Hasbullah, H.B.; Yahya, N.; Nayan, Y.B; Rostami, A.; Rauf, M.: Computer algorithm for airwave prediction in marine controlled source electromagnetics data. In: 2016 3rd International Conference on Computer and Information Sciences (ICCOINS) 386–390 (2016)
Holten, T.; Flekkøy, E.G.; Singer, B.; Blixt, E.M.; Hanssen, A.; Måløy K.J.: Vertical source, vertical receiver, electromagnetic technique for offshore hydrocarbon exploration. First Break 27 (2009)
Flekkøy, E.; Holten, T.; Veiberg. D.: Vertical electric time-domain responses from a vertical current source for offshore hydrocarbon exploration. In: 71st EAGE Conference and Exhibition incorporating SPE EUROPEC 2009 (2009)
Løseth, L.O.: Modelling of controlled source electromagnetic data. PhD Thesis, Fakultet for naturvitenskap og teknologi (2007)
Wang, M.; Deng, M.; Zhao, Q.; Luo, X.; Jing, J.: Two types of marine controlled source electromagnetic transmitters. Geophys. Prospect. 63, 1403–1419 (2015)
Helwig, S.; Mogilatov, V.; Balashov, B.: Enhanced sensitivity in land EM by using an unconventional source. In: EGM 2010 International Workshop (2010)
Fan, Y.; Snieder, R.; Slob, E.; Hunziker, J.; Singer, J.; Sheiman, J., et al.: Increasing the sensitivity of controlled-source electromagnetics with synthetic aperture. Geophysics 77, E135–E145 (2012)
Davydycheva, S.; Rykhlinski, N.; Legeido, P.: Electrical-prospecting method for hydrocarbon search using the induced-polarization effect. Geophysics 71, G179–G189 (2006)
Davydycheva, S.; Rykhlinski, N.: Focused-source electromagnetic survey versus standard CSEM: 3D modeling in complex geometries. Geophysics 76, F27–F41 (2011)
Rykhlinski, N.I.; Davydycheva, S.N.; Lisin, A.S.: Method of marine electromagnetic survey using focusing electric current. ed: Google Patents (2010)
Zhdanov, M.: Focusing controlled sensitivity of geophysical data. J. Geol. Geosci. S 10, 1–5 (2013)
López-González, A.E.; Tejero-Andrade, A.; Hernández-Martínez, J.L.; Prado, B.; Chávez, R.E.: Induced polarization and resistivity of second potential differences (SPD) with focused sources applied to environmental problems. J. Environ. Eng. Geophys. 24, 49–61 (2019)
Kashik, A.; Rykhlinski, N.; Knizhnerman, L.; Krivonosov, R.; Stepanov, A.: On a problem of the wireline electric logging of wells with steel casing (in Russian). (2004)
Zhou, H.; Yao, Y.; Liu, C.; Lin, J.; Kang, L.; Li, G., et al.: Feasibility of signal enhancement with multiple grounded-wire sources for a frequency-domain electromagnetic survey. Geophys. Prospect. 66, 818–832 (2018)
Srnka, L.J.: Remote reservoir resistivity mapping. ed: Google Patents (2003)
Rauf, M.; Khan, A.M.; Ansari, A.; Jilani, M.T.; Shahzeb, T.: Skin depth verification of the electromagnetic waves for hydrocarbon detection. Int. J. Appl. Electromagnet. Mech. 60, 313–326 (2019)
CST computer simulation technology. ed: EM Low Frequency Studio, [Software], (2012)
Rulff, P.; Buntin, L.M.; Kalscheuer, T.: Efficient goal-oriented mesh refinement in 3-D finite-element modelling adapted for controlled source electromagnetic surveys. Geophys. J. Int. 227, 1624–1645 (2021)
Saltelli, A.; Aleksankina, K.; Becker, W.; Fennell, P.; Ferretti, F.; Holst, N., et al.: Why so many published sensitivity analyses are false: a systematic review of sensitivity analysis practices. Environ. Model. Softw. 114, 29–39 (2019)
Asheghi, R.; Hosseini, S.A.; Saneie, M.; Shahri, A.A.: Updating the neural network sediment load models using different sensitivity analysis methods: a regional application. J. Hydroinf. 22, 562–577 (2020)
Ayani, M.; Grana, D.; MacGregor, L.; Mallick, S.: Sensitivity analysis of marine controlled source electromagnetic data in CO2 monitoring of the Johansen Formation. In: SEG International Exposition and Annual Meeting (2019)
Kaputerko, A.; Gribenko, A.; Zhdanov, M.S.: Sensitivity analysis of marine CSEM surveys. In: SEG Technical Program Expanded Abstracts 2007, ed: Society of Exploration Geophysicists 2007 609–613 (2007)
Xu, Y.; Xue, W.; Li, Y.; Guo, L.; Shang, W.: Electromagnetic field analysis of an electric dipole antenna based on a surface integral equation in multilayered dissipative media. Appl. Sci. 7, 774 (2017)
Dahy, E.; Shafie, A.; Abdel-Aty, A.-H.; Yahya, N.; Nyamasvisva, T.E.: Simulation of the electromagnetic field response of a horizontal ring electric dipole antenna in planarly homogeneous layered media. J. Comput. Theor. Nanosci. 14, 3149–3155 (2017)
Somaraju, R.; Trumpf, J.: Frequency, temperature and salinity variation of the permittivity of seawater. IEEE Trans. Antennas Propag. 54, 3441–3448 (2006)
Dahy, E.; Shafie, A.; Yahya, N.: A study on the behavior of electromagnetic waves for a curved antenna. Appl. Math. 10, 2101–2108 (2016)
Ellingsrud, S.; Eidesmo, T.; Pedersen, H.; Schaug Pettersen, T.: Method for electric dipole configuration on the seabed. Int. Pat. Appl. PCT GB01/03473 Prior. Date 14, 2000 (2000)
Zheng, Z.; Fu, Y.; Liu, K.; Xiao, R.; Wang, X.; Shi, H.: Three-stage vertical distribution of seawater conductivity. Sci. Rep. 8, 1–10 (2018)
Stat-Ease, I.: Design Expert 10.0, 10 ed
Rauf, M.; Yahya, N.; Sagayan, V.; Nyamasvisva, T.E.; Rostami, A.: Improved hydrocarbon reservoir detection using enhanced transmitter. In: 2016 6th International Conference on Intelligent and Advanced Systems (ICIAS) 1–5 (2016)
Nyamasvisva, T.E.; Yahya, N.; Hasbullah, H.B.; Rauf, M.; Rostami, A.; Dahy, E.: Estimating direct waves with respect to receiver offset, antenna current and frequency in MCSEM. Int. Conf. Comput. Commun. Eng. (ICCCE) 2016, 480–484 (2016)