Enhancing CO2-Valorization Using Clostridium autoethanogenum for Sustainable Fuel and Chemicals Production

James K. Heffernan1, Kaspar Valgepea1,2, Renato de Souza Pinto Lemgruber1, Isabella Casini3, Manuel R. Plan4, Ryan Tappel5, Séan D. Simpson5, Michael Köpke5, Lars K. Nielsen1,4, Esteban Marcellin1,4
1Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, QLD, Australia
2ERA Chair in Gas Fermentation Technologies, Institute of Technology, University of Tartu, Tartu, Estonia
3Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
4Queensland Node of Metabolomics Australia, The University of Queensland, Saint Lucia, QLD, Australia
5LanzaTech Inc., Skokie, IL, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adamberg, 2015, Advanced continuous cultivation methods for systems microbiology, Microbiology, 161, 1707, 10.1099/mic.0.000146

Artz, 2018, Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment, Chem. Rev., 118, 434, 10.1021/acs.chemrev.7b00435

Bengelsdorf, 2018, Bacterial anaerobic synthesis gas (syngas) and CO2 + H2 fermentation, Adv. Appl. Microbiol., 103, 143, 10.1016/bs.aambs.2018.01.002

Braun, 1981, Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum, Arch. Microbiol., 128, 294, 10.1007/BF00422533

Charubin, 2019, Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space, Metab. Eng., 52, 9, 10.1016/j.ymben.2018.10.006

Claassens, 2016, Harnessing the power of microbial autotrophy, Nat. Rev. Microbiol., 14, 692, 10.1038/nrmicro.2016.130

Cueto-Rojas, 2015, Thermodynamics-based design of microbial cell factories for anaerobic product formation, Trends Biotechnol., 33, 534, 10.1016/j.tibtech.2015.06.010

Detz, 2018, The future of solar fuels: when could they become competitive?, Energy Environ. Sci., 11, 1653, 10.1039/C8EE00111A

Drake, 2008, Old acetogens, new light, Ann. N. Y. Acad. Sci., 1125, 100, 10.1196/annals.1419.016

Emerson, 2019, Limitations in converting waste gases to fuels and chemicals, Curr. Opin. Biotechnol., 59, 39, 10.1016/j.copbio.2019.02.004

Emerson, 2019, Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahli through nitrate supplementation, Biotechnol. Bioeng., 116, 294, 10.1002/bit.26847

Fast, 2012, Stoichiometric and energetic analyses of non-photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals, Curr. Opin. Chem. Eng., 1, 380, 10.1016/j.coche.2012.07.005

Furdui, 2000, The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway, J. Biol. Chem., 275, 28494, 10.1074/jbc.M003291200

Glenk, 2019, Economics of converting renewable power to hydrogen, Nat. Energy, 4, 216, 10.1038/s41560-019-0326-1

Götz, 2016, Renewable power-to-gas: a technological and economic review, Renew. Energy, 85, 1371, 10.1016/j.renene.2015.07.066

Groher, 2016, Comparative reaction engineering analysis of different acetogenic bacteria for gas fermentation, J. Biotechnol., 228, 82, 10.1016/j.jbiotec.2016.04.032

Haas, 2018, Technical photosynthesis involving CO2 electrolysis and fermentation, Nat. Catal., 1, 32, 10.1038/s41929-017-0005-1

Handler, 2016, Life cycle assessments of ethanol production via gas fermentation: anticipated greenhouse gas emissions for cellulosic and waste gas feedstocks, Ind. Eng. Chem. Res., 55, 3253, 10.1021/acs.iecr.5b03215

Henry, 2016, Short relaxation times but long transient times in both simple and complex reaction networks, J. R. Soc. Interface, 13, 20160388, 10.1098/rsif.2016.0388

Hess, 2013, The ferredoxin: NAD+ oxidoreductase (Rnf) from the acetogen acetobacterium woodii requires na+ and is reversibly coupled to the membrane potential, J. Biol. Chem., 288, 31496, 10.1074/jbc.M113.510255

Hoffmeister, 2016, Acetone production with metabolically engineered strains of Acetobacterium woodii, Metab. Eng., 36, 37, 10.1016/j.ymben.2016.03.001

Hoskisson, 2005, Continuous culture - making a comeback?, Microbiology, 151, 3153, 10.1099/mic.0.27924-0

Hu, 2016, Integrated bioprocess for conversion of gaseous substrates to liquids, Proc. Natl. Acad. Sci. U.S.A, 113, 2, 10.1073/pnas.1516867113

Igamberdiev, 2009, Metabolic systems maintain stable non-equilibrium via thermodynamic buffering, Bioessays, 31, 1091, 10.1002/bies.200900057

Infantes, 2020, Effect of cysteine, yeast extract, pH regulation and gas flow on acetate and ethanol formation and growth profiles of clostridium ljungdahlii syngas fermentation, BioRxiv[Preprint], 10.1101/2020.01.13.904292

2014, Climate Change 2014: Mitigation of Climate Change

2017, Renewable Power Generation Costs in 2017

Jones, 2016, CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion, Nat. Commun., 7, 12800, 10.1038/ncomms12800

Kantzow, 2015, Continuous gas fermentation by Acetobacterium woodii in a submerged membrane reactor with full cell retention, J. Biotechnol., 212, 11, 10.1016/j.jbiotec.2015.07.020

Keith, 2018, A process for capturing CO2 from the atmosphere, Joule, 2, 1573, 10.1016/j.joule.2018.05.006

Klask, 2019, An open-source multiple-bioreactor system for replicable gas- fermentation experiments: nitrate feed results in stochastic inhibition events, but improves ethanol production of Clostridium ljungdahlii with CO2 and H2, BioRxiv[Preprint], 10.1101/2019.12.15.877050

Liew, 2016, Gas fermentation – a flexible platform for commercial scale production of low carbon fuels and chemicals from waste and renewable feedstocks, Front. Microbiol., 7, 694, 10.3389/fmicb.2016.00694

Ma, 2005, Note on the mechanism of interfacial mass transfer of absorption processes, Int. J. Heat Mass Transf., 48, 3454, 10.1016/j.ijheatmasstransfer.2005.03.008

Mock, 2015, Energy conservation associated with ethanol formation from H2and CO2in Clostridium autoethanogenum involving electron bifurcation, J. Bacteriol., 197, 2965, 10.1128/JB.00399-15

Molitor, 2019, Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess, Energy Environ. Sci., 12, 3515, 10.1039/C9EE02381J

Morinaga, 1990, The production of acetic acid from carbon dioxide and hydrogen by an anaerobic bacterium, J. Biotechnol., 14, 187, 10.1016/0168-1656(90)90007-X

Müller, 2019, New horizons in acetogenic conversion of one-carbon substrates and biological hydrogen storage, Trends Biotechnol., 37, 1344, 10.1016/j.tibtech.2019.05.008

Orth, 2011, What is flux balance analysis?, Nat. Biotechnol., 28, 245, 10.1038/nbt.1614

Otto, 2015, Closing the loop: captured CO2 as a feedstock in the chemical industry, Energy Environ. Sci., 8, 3283, 10.1039/C5EE02591E

Park, 2019, Synergistic substrate cofeeding stimulates reductive metabolism, Nat. Metab., 1, 643, 10.1038/s42255-019-0077-0

Pierce, 2008, The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum), Environ. Microbiol., 10, 2550, 10.1111/j.1462-2920.2008.01679.x

Poehlein, 2015, The complete genome sequence of Clostridium aceticum: a missing link between Rnf- and cytochrome-containing autotrophic acetogens, MBio, 6, e01168, 10.1128/mBio.01168-15

Qian, 2005, Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium, Biophys. Chem., 114, 213, 10.1016/j.bpc.2004.12.001

Quéméner, 2014, A thermodynamic theory of microbial growth, ISME J., 8, 1747, 10.1038/ismej.2014.7

Redl, 2017, Exploiting the potential of gas fermentation, Ind. Crops Prod., 106, 21, 10.1016/j.indcrop.2016.11.015

Richter, 2016, Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression, Energy Environ. Sci., 9, 2392, 10.1039/C6EE01108J

Sakai, 2005, Acetate and ethanol production from H2 and CO2 by Moorella sp. using a repeated batch culture, J. Biosci. Bioeng., 99, 252, 10.1263/jbb.99.252

Sandoval-Espinola, 2017, Evidence of mixotrophic carbon-capture by n-butanol-producer Clostridium beijerinckii, Sci. Rep., 7, 1, 10.1038/s41598-017-12962-8

Schuchmann, 2014, Autotrophy at the thermodynamic limit of life: a model for energy conservation in acetogenic bacteria, Nat. Rev. Microbiol., 12, 809, 10.1038/nrmicro3365

Standing, 1972, Batch- and continuous-culture transients for two substrate systems, Appl. Microbiol., 23, 354, 10.1128/AEM.23.2.354-359.1972

TizardJ. H. SechristP. A. Washington, DCU.S. Patent and Trademark OfficeCarbon Capture in Fermentation. U.S. Patent No 0,111,2662015

Valgepea, 2018, H2 drives metabolic rearrangements in gas-fermenting Clostridium autoethanogenum, Biotechnol. Biofuels, 11, 55, 10.1186/s13068-018-1052-9

Valgepea, 2017, Maintenance of ATP homeostasis triggers metabolic shifts in gas-fermenting acetogens, Cell Syst., 4, 505, 10.1016/j.cels.2017.04.008