Enhancing Bidirectional Electron Transfer of Shewanella oneidensis by a Synthetic Flavin Pathway

ACS Synthetic Biology - Tập 4 Số 7 - Trang 815-823 - 2015
Yun Yang1,2, Yuanzhao Ding1, Yidan Hu1,2, Bin Cao3,2, Stuart A. Rice1, Staffan Kjelleberg1, Hao Song4
1Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
2Singapore#R#Centre on Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
3School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637798, Singapore
4Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P.R. China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yang Y. G., 2012, Process Biochem., 47, 1707, 10.1016/j.procbio.2012.07.032

Torres C. I., 2010, FEMS Microbiol. Rev., 34, 3, 10.1111/j.1574-6976.2009.00191.x

Franks A. E., 2010, Energies, 3, 899, 10.3390/en3050899

Rimboud M., 2014, Phys. Chem. Chem. Phys., 16, 16349, 10.1039/C4CP01698J

Logan B. E., 2009, Nat. Rev. Microbiol., 7, 375, 10.1038/nrmicro2113

Lovley D. R., 2006, Nat. Rev. Microbiol., 4, 497, 10.1038/nrmicro1442

Ng C. K., 2013, Biotechnol. Bioeng., 110, 1831, 10.1002/bit.24856

Wang V. B., 2013, PLoS One, 8, e63129, 10.1371/journal.pone.0063129

Rabaey K., 2010, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422

Nevin K. P., 2010, MBio, 1, e00103, 10.1128/mBio.00103-10

Lovley D. R., 2013, Curr. Opin. Biotechnol., 24, 385, 10.1016/j.copbio.2013.02.012

Jiao Y., 2011, J. Bacteriol., 193, 3662, 10.1128/JB.00201-11

Coursolle D., 2010, J. Bacteriol., 192, 467, 10.1128/JB.00925-09

Bretschger O., 2007, Appl. Environ. Microbiol., 73, 7003, 10.1128/AEM.01087-07

Schuetz B., 2009, Appl. Environ. Microb., 75, 7789, 10.1128/AEM.01834-09

Lies D. P., 2005, Appl. Environ. Microb., 71, 4414, 10.1128/AEM.71.8.4414-4426.2005

10.3389/fmicb.2012.00056

Gescher J. S., 2008, Mol. Microbiol., 68, 706, 10.1111/j.1365-2958.2008.06183.x

Okamoto A., 2012, Bioelectrochemistry, 85, 61, 10.1016/j.bioelechem.2011.12.003

Okamoto A., 2011, Electrochim. Acta, 56, 5526, 10.1016/j.electacta.2011.03.076

El-Naggar M. Y., 2010, Proc. Natl. Acad. Sci. U.S.A., 107, 18127, 10.1073/pnas.1004880107

Brutinel E. D., 2012, Appl. Microbiol. Biot., 93, 41, 10.1007/s00253-011-3653-0

Marsili E., 2008, Proc. Natl. Acad. Sci. U.S.A., 105, 3968, 10.1073/pnas.0710525105

von Canstein H., 2008, Appl. Environ. Microb., 74, 615, 10.1128/AEM.01387-07

Kotloski N. J., 2013, MBio, 4, e00553, 10.1128/mBio.00553-12

10.1002/celc.201402151

Okamoto A., 2014, Angew. Chem., Int. Ed., 53, 10988, 10.1002/anie.201407004

Okamoto A., 2013, Proc. Natl. Acad. Sci. U.S.A., 110, 7856, 10.1073/pnas.1220823110

Okamoto A., 2014, Energy Environ. Sci., 7, 1357, 10.1039/C3EE43674H

Ross D. E., 2011, PLoS One, 6, e16649, 10.1371/journal.pone.0016649

10.1038/srep05628

Baron D., 2009, J. Biol. Chem., 284, 28865, 10.1074/jbc.M109.043455

Ross D. E., 2009, Appl. Environ. Microbiol., 75, 5218, 10.1128/AEM.00544-09

Johnson E. T., 2010, Appl. Environ. Microbiol., 76, 4123, 10.1128/AEM.02425-09

Flynn J. M., 2010, MBio, 1, e00190, 10.1128/mBio.00190-10

Kane A. L., 2013, ACS Synth. Biol., 2, 93, 10.1021/sb300042w

Abbas C. A., 2011, Microbiol. Mol. Biol. Rev., 75, 321, 10.1128/MMBR.00030-10

Sauer U., 1998, Biotechnol. Bioeng., 59, 227, 10.1002/(SICI)1097-0290(19980720)59:2<227::AID-BIT10>3.0.CO;2-B

Covington E. D., 2010, Mol. Microbiol., 78, 519, 10.1111/j.1365-2958.2010.07353.x

Tsvetanova B., 2011, Methods Enzymol., 498, 327, 10.1016/B978-0-12-385120-8.00014-0

Ellis T., 2011, Integr. Biol. (Camb.), 3, 109, 10.1039/c0ib00070a

Tang Y. J. J., 2007, Appl. Environ. Microb., 73, 718, 10.1128/AEM.01532-06

Kearns D. B., 2010, Nat. Rev. Microbiol., 8, 634, 10.1038/nrmicro2405

Thormann K. M., 2004, J. Bacteriol., 186, 8096, 10.1128/JB.186.23.8096-8104.2004

De Vriendt K., 2005, Proteomics, 5, 1308, 10.1002/pmic.200400989

Saville R. M., 2011, J. Bacteriol., 193, 3257, 10.1128/JB.00251-11

Velasquez-Orta S. B., 2009, Biotechnol. Bioeng., 103, 1068, 10.1002/bit.22346

Zhao F., 2009, Chem. Soc. Rev., 38, 1926, 10.1039/b819866g

Kanehisa M., 2000, Nucleic Acids Res., 28, 27, 10.1093/nar/28.1.27

Caspi R., 2014, Nucleic Acids Res., 42, D459, 10.1093/nar/gkt1103

Grote A., 2005, Nucleic Acids Res., 33, W526, 10.1093/nar/gki376

Austin C., 2009, MIT Synthetic Biology Working Group Technical Reports

International Genetically Engineered Machines competition,http://igem.org.

Richardson S. M., 2010, Nucleic Acids Res., 38, 2603, 10.1093/nar/gkq143

Hughes R. A., 2011, Methods Enzymol., 498, 277, 10.1016/B978-0-12-385120-8.00012-7

Bode M., 2009, Nucleic Acids Res., 37, W214, 10.1093/nar/gkp461

Wu L., 2011, PLoS One, 6, e21479, 10.1371/journal.pone.0021479

Knight, T. F. (2003) Idempotent vector design for standard assembly of BioBricks.MIT Synthetic Biology Working Group Technical Reports;MIT Artificial Intelligence Laboratory, MIT Synthetic Biology Working Group,Cambridge, MA. Available online:http://dspace.mit.edu/handle/1721.1/21168.

Saltikov C. W., 2003, Proc. Natl. Acad. Sci. U.S.A., 100, 10983, 10.1073/pnas.1834303100

Ghasemi M., 2013, Int. J. Hydrogen Energy, 38, 5480, 10.1016/j.ijhydene.2012.09.148