Enhancement of vehicle dynamics via an innovative magnetorheological fluid limited slip differential
Tài liệu tham khảo
Austin, 2000, Recent advances in antilock braking systems and traction control systems, Proc. IMechE Part D: J. Automob. Eng., 214, 625, 10.1243/0954407001527493
Drakunov, 1995, ABS control using optimum search via sliding modes, IEEE Trans. Control Syst. Technol., 3, 79, 10.1109/87.370698
Tseng, 1999, The development of vehicle stability control at Ford, IEEE/ASME Trans. Mechatron., 4, 223, 10.1109/3516.789681
K. Koibuchi, M. Yamamoto, Y. Fukada, S. Inagaki, Vehicle Stability Control in Limit Cornering by Active Brake, SAE Technical Paper, 960487, 1996.
Rajamani, 2006
I.H. Taureg, J. Horst, Induced Torque Amplification in Viscous Couplings, SAE Technical Papers, 900557, 1990.
T. Gassmann, J. Barlage, Visco-lok: A Speed-Sensing Limited-slip Device with High-torque Progressive Engagement, SAE Paper, 960718, 1996.
M. Terzo, Employment of Magneto-rheological Semi-active Differential in a Front Wheel Drive Vehicle: Device Modelling and Software Simulations, SAE Technical Papers 2009-24-0130, 2009, 10.4271/2009-24-0130.
Lanzotti, 2013, A physical prototype of an automotive magnetorheological differential, WCE 2013, Lect. Notes Eng.Comput. Sci., 3, 2131
Lanzotti, 2014, Design and development of an automotive magnetorheological semi-active differential, Mechatronics, 24, 426, 10.1016/j.mechatronics.2014.04.002
Karakoc, 2008, Design considerations for an automotive magnetorheological brake, Mechatronics, 18, 434, 10.1016/j.mechatronics.2008.02.003
Kavlicoglu, 2007, Response time and performance of a high-torque magneto-rheological fluid limited slip differential clutch, Smart Mater. Struct., 16, 149, 10.1088/0964-1726/16/1/019
J.D. Carlson, Magnetorheological Brake with Integrated Flywheel, United States Patent Number 6 186290 B1, 2001.
S. Gopalswamy, G.L. Jones, Magnetorheological Transmission Clutch, United States Patent Number 5823309, 1998.
Li, 2003, Design and experimental evaluation of a magnetorheological brake, Int. J. Adv. Manuf. Technol., 21, 508, 10.1007/s001700300060
Russo, 2011, Modelling, parameter identification, and control of a shear mode magnetorheological device, Proc. IMechE Part I: J. Syst. Control Eng., 225, 549
Russo, 2011, Design of an adaptive control for a magnetorheological fluid brake with model parameters depending on temperature and speed, Smart Mater. Struct., 20, 115003, 10.1088/0964-1726/20/11/115003
Heisler, 2002
De Rosa, 2009, Optimisation of handling and traction in a rear wheel drive vehicle by means of magneto-rheological semi-active differential, Veh. Syst. Dyn., 47, 533, 10.1080/00423110802233185
N. Takesue, J. Furusho, M. Sakaguchi, Improvement of response properties of MR-fluid actuator by torque feedback control, in: Proceedings of the 2001 IEEE Intenational Conference on Robotics and Automation, Korea, 2001, pp. 3825–3830.
Pacejka, 2002
He, 2006, Coordination of active steering, driveline, and braking for integrated vehicle dynamics control, Proc. IMechE Part D: J. Automob. Eng., 220, 1401, 10.1243/09544070JAUTO265
Yi, 2003, An investigation into differential braking strategies for vehicle stability control, Proc. IMechE Part D: J. Automob. Eng., 217, 1081, 10.1243/09544070360729428
B. Kwak, Y. Park, Robust vehicle stability controller by multiple sliding model control, in: Proceedings of AVEC2000 5th International Symposium on Advanced Vehicle Control, Ann Arbor, Michigan, 2000.
Slotine, 1991
Ray, 1995, Nonlinear state and tire force estimation for advanced vehicle control, IEEE Trans. Control Syst. Technol., 3, 117, 10.1109/87.370717
Ray, 1997, Nonlinear tire force estimation and road friction identification: simulation and experiments, Automatica, 33, 1819, 10.1016/S0005-1098(97)00093-9
Perreault, 2004, Automotive power generation and control, IEEE Trans. Power Gener. Control, 19, 618, 10.1109/TPEL.2004.826432