Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering
Tài liệu tham khảo
Niu, 2015, From two-dimensional materials to heterostructures, Prog. Surf. Sci., 90, 21, 10.1016/j.progsurf.2014.11.001
Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358
Wang, 2014, Two-dimensional heterostructures: fabrication, characterization, and application, Nanoscale, 6, 12250, 10.1039/C4NR03435J
Le, 2016, Interlayer interactions in van der waals heterostructures: electron and phonon properties, ACS Appl. Mater. Interfaces, 8, 6286, 10.1021/acsami.6b00285
Balandin, 2012, Phononics in low-dimensional materials, Mater. Today, 15, 266, 10.1016/S1369-7021(12)70117-7
Chen, 2017, Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures, Carbon, 117, 399, 10.1016/j.carbon.2017.03.011
Liu, 2017, Thermal conductance of the 2d mos2/h-bn and graphene/h-bn interfaces, Sci. Rep., 7, 1
Yan, 2016, Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures, Nanoscale, 8, 4037, 10.1039/C5NR06818E
Li, 2012, Colloquium: phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys., 84, 1045, 10.1103/RevModPhys.84.1045
Zhong, 2012, Thermal control in graphene nanoribbons: thermal valve, thermal switch and thermal amplifier, Nanoscale, 4, 5217, 10.1039/c2nr30634d
Pal, 2015, Thermal and gate using a monolayer graphene nanoribbon, Small, 11, 2910, 10.1002/smll.201303888
Hu, 2009, Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study, Nano Lett., 9, 2730, 10.1021/nl901231s
Wang, 2014, Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures, Nano Lett., 14, 592, 10.1021/nl403773f
H. Tian, D. Xie, Y. Yang, T.-L. Ren, G. Zhang, Y.-F. Wang, C.-J. Zhou, P.-G. Peng, L.-G. Wang, L.-T. Liu, A novel solid-state thermal rectifier based on reduced graphene oxide, Sci. Rep. 2.
Chang, 2006, Solid-state thermal rectifier, Science, 314, 1121, 10.1126/science.1132898
Yang, 2017, Ultrahigh thermal rectification in pillared graphene structure with carbon nanotube-graphene intramolecular junctions, ACS Appl. Mater. Interfaces, 9, 29, 10.1021/acsami.6b12853
Lee, 2012, Thermal rectification in three-dimensional asymmetric nanostructure, Nano Lett., 12, 3491, 10.1021/nl301006y
Ci, 2010, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater, 9, 430, 10.1038/nmat2711
Liu, 2014, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges, Science, 343, 163, 10.1126/science.1246137
Gao, 2013, Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges, Nano Lett., 13, 3439, 10.1021/nl4021123
Barrios-Vargas, 2017, Electrical and thermal transport in coplanar polycrystalline graphene-hbn heterostructures, Nano Lett., 17, 1660, 10.1021/acs.nanolett.6b04936
Li, 2016, Hexagonal boron nitride-graphene heterostructures: synthesis and interfacial properties, Small, 12, 32, 10.1002/smll.201501766
Lu, 2014, Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride, Nano Lett., 14, 5133, 10.1021/nl501900x
Seol, 2011, Bandgap opening in boron nitride confined armchair graphene nanoribbon, Appl. Phys. Lett., 98, 10.1063/1.3571282
An, 2016, The rectifying and negative differential resistance effects in graphene/h-bn nanoribbon heterojunctions, Phys. Chem. Chem. Phys., 18, 27976, 10.1039/C6CP05912K
Zhu, 2015, Resolving anomalous strain effects on two-dimensional phonon flows: the cases of graphene, boron nitride, and planar superlattices, Phys. Rev. B, 91, 10.1103/PhysRevB.91.205429
Chen, 2016, The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain, J. Phys. D. Appl. Phys., 49, 10.1088/0022-3727/49/11/115301
Hong, 2016, Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet, Phys. Chem. Chem. Phys., 18, 24164, 10.1039/C6CP03933B
Chen, 2016, Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction, Carbon, 100, 492, 10.1016/j.carbon.2016.01.045
da Silva, 2016, Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride, Phys. Rev. B, 93, 10.1103/PhysRevB.93.125427
Kinaci, 2012, Thermal conductivity of bn-c nanostructures, Phys. Rev. B, 86, 10.1103/PhysRevB.86.115410
Zhu, 2014, Phonon transport on two-dimensional graphene/boron nitride superlattices, Phys. Rev. B, 90, 10.1103/PhysRevB.90.195209
Jiang, 2011, Minimum thermal conductance in graphene and boron nitride superlattice, Appl. Phys. Lett., 99, 10.1063/1.3619832
Ong, 2016, Controlling the thermal conductance of Graphene/h–BN lateral interface with strain and structure engineering, Phys. Rev. B, 93, 10.1103/PhysRevB.93.075406
Sevinçli, 2011, Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets, Phys. Rev. B, 84, 10.1103/PhysRevB.84.205444
Seol, 2010, Two-dimensional phonon transport in supported graphene, Science, 328, 213, 10.1126/science.1184014
Cai, 2010, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10, 1645, 10.1021/nl9041966
Chen, 2013, Substrate coupling suppresses size dependence of thermal conductivity in supported graphene, Nanoscale, 5, 532, 10.1039/C2NR32949B
Zhang, 2015, Bilateral substrate effect on the thermal conductivity of two-dimensional silicon, Nanoscale, 7, 6014, 10.1039/C4NR06523A
Zhang, 2015, Molecular dynamics study of interfacial thermal transport between silicene and substrates, Phys. Chem. Chem. Phys., 17, 23704, 10.1039/C5CP03323C
Wang, 2015, Thermal conductivity and spectral phonon properties of freestanding and supported silicene, J. Appl. Phys., 117, 10.1063/1.4913600
Correa, 2017, Interface thermal conductance of van der waals monolayers on amorphous substrates, Nanotechnol, 28, 10.1088/1361-6528/aa5e3d
Zhang, 2017, Molecular dynamics simulation of the interfacial thermal resistance between phosphorene and silicon substrate, Int. J. Heat. Mass Tran, 104, 871, 10.1016/j.ijheatmasstransfer.2016.08.021
Medrano Sandonas, 2015, Engineering thermal rectification in mos2 nanoribbons: a non-equilibrium molecular dynamics study, RSC Adv., 5, 54345, 10.1039/C5RA05733G
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys., 117, 1, 10.1006/jcph.1995.1039
Munetoh, 2007, Interatomic potential for si-o systems using tersoff parameterization, Comp. Mater. Sci., 39, 334, 10.1016/j.commatsci.2006.06.010
Kumagai, 2007, Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation, Comp. Mater. Sci., 39, 457, 10.1016/j.commatsci.2006.07.013
Tersoff, 1989, Modeling solid-state chemistry: interatomic potentials for multicomponent systems, Phys. Rev. B, 39, 5566, 10.1103/PhysRevB.39.5566
Neek-Amal, 2014, Graphene on boron-nitride: moir pattern in the van der waals energy, Appl. Phys. Lett., 104, 10.1063/1.4863661
Bellido, 2010, Molecular dynamics simulations of folding of supported graphene, J. Phys. Chem. C, 114, 22472, 10.1021/jp108481x
Pei, 2012, Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene, Appl. Phys. Lett., 100, 10.1063/1.3692173
Liu, 2014, Interface thermal conductance and rectification in hybrid graphene/silicene monolayer, Carbon, 79, 236, 10.1016/j.carbon.2014.07.064
Gordiz, 2014, Thermal rectification in pristine-hydrogenated carbon nanotube junction: a molecular dynamics study, J. Appl. Phys., 115, 10.1063/1.4873124
Lan, 2006, Thermal rectifying effect in two-dimensional anharmonic lattices, Phys. Rev. B, 74, 10.1103/PhysRevB.74.214305
Li, 2005, Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.104302
Zhang, 2011, Thermal conduction and rectification in few-layer graphene y junctions, Nanoscale, 3, 4604, 10.1039/c1nr10945f
Alaghemandi, 2010, Thermal rectification in nanosized model systems: a molecular dynamics approach, Phys. Rev. B, 81, 10.1103/PhysRevB.81.125410