Enhancement of thermal transport properties of asymmetric Graphene/hBN nanoribbon heterojunctions by substrate engineering

Carbon - Tập 124 - Trang 642-650 - 2017
Leonardo Medrano Sandonas1,2, G. Cuba-Supanta3, Rafael Gutierrez1, Arezoo Dianat1, Carlos V. Landauro3,4, Gianaurelio Cuniberti1,5,6
1Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany
2Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
3Faculty of Physical Sciences, National University of San Marcos, P. O. Box 14-0149, Lima, 14 Peru
4Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales (CIBTM), Bella Vista, Callao, Peru
5Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany
6Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany

Tài liệu tham khảo

Niu, 2015, From two-dimensional materials to heterostructures, Prog. Surf. Sci., 90, 21, 10.1016/j.progsurf.2014.11.001 Wang, 2013, One-dimensional electrical contact to a two-dimensional material, Science, 342, 614, 10.1126/science.1244358 Wang, 2014, Two-dimensional heterostructures: fabrication, characterization, and application, Nanoscale, 6, 12250, 10.1039/C4NR03435J Le, 2016, Interlayer interactions in van der waals heterostructures: electron and phonon properties, ACS Appl. Mater. Interfaces, 8, 6286, 10.1021/acsami.6b00285 Balandin, 2012, Phononics in low-dimensional materials, Mater. Today, 15, 266, 10.1016/S1369-7021(12)70117-7 Chen, 2017, Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures, Carbon, 117, 399, 10.1016/j.carbon.2017.03.011 Liu, 2017, Thermal conductance of the 2d mos2/h-bn and graphene/h-bn interfaces, Sci. Rep., 7, 1 Yan, 2016, Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures, Nanoscale, 8, 4037, 10.1039/C5NR06818E Li, 2012, Colloquium: phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys., 84, 1045, 10.1103/RevModPhys.84.1045 Zhong, 2012, Thermal control in graphene nanoribbons: thermal valve, thermal switch and thermal amplifier, Nanoscale, 4, 5217, 10.1039/c2nr30634d Pal, 2015, Thermal and gate using a monolayer graphene nanoribbon, Small, 11, 2910, 10.1002/smll.201303888 Hu, 2009, Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study, Nano Lett., 9, 2730, 10.1021/nl901231s Wang, 2014, Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures, Nano Lett., 14, 592, 10.1021/nl403773f H. Tian, D. Xie, Y. Yang, T.-L. Ren, G. Zhang, Y.-F. Wang, C.-J. Zhou, P.-G. Peng, L.-G. Wang, L.-T. Liu, A novel solid-state thermal rectifier based on reduced graphene oxide, Sci. Rep. 2. Chang, 2006, Solid-state thermal rectifier, Science, 314, 1121, 10.1126/science.1132898 Yang, 2017, Ultrahigh thermal rectification in pillared graphene structure with carbon nanotube-graphene intramolecular junctions, ACS Appl. Mater. Interfaces, 9, 29, 10.1021/acsami.6b12853 Lee, 2012, Thermal rectification in three-dimensional asymmetric nanostructure, Nano Lett., 12, 3491, 10.1021/nl301006y Ci, 2010, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater, 9, 430, 10.1038/nmat2711 Liu, 2014, Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges, Science, 343, 163, 10.1126/science.1246137 Gao, 2013, Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges, Nano Lett., 13, 3439, 10.1021/nl4021123 Barrios-Vargas, 2017, Electrical and thermal transport in coplanar polycrystalline graphene-hbn heterostructures, Nano Lett., 17, 1660, 10.1021/acs.nanolett.6b04936 Li, 2016, Hexagonal boron nitride-graphene heterostructures: synthesis and interfacial properties, Small, 12, 32, 10.1002/smll.201501766 Lu, 2014, Lattice relaxation at the interface of two-dimensional crystals: graphene and hexagonal boron-nitride, Nano Lett., 14, 5133, 10.1021/nl501900x Seol, 2011, Bandgap opening in boron nitride confined armchair graphene nanoribbon, Appl. Phys. Lett., 98, 10.1063/1.3571282 An, 2016, The rectifying and negative differential resistance effects in graphene/h-bn nanoribbon heterojunctions, Phys. Chem. Chem. Phys., 18, 27976, 10.1039/C6CP05912K Zhu, 2015, Resolving anomalous strain effects on two-dimensional phonon flows: the cases of graphene, boron nitride, and planar superlattices, Phys. Rev. B, 91, 10.1103/PhysRevB.91.205429 Chen, 2016, The thermal conductivity in hybridised graphene and boron nitride nanoribbons modulated with strain, J. Phys. D. Appl. Phys., 49, 10.1088/0022-3727/49/11/115301 Hong, 2016, Thermal contact resistance across a linear heterojunction within a hybrid graphene/hexagonal boron nitride sheet, Phys. Chem. Chem. Phys., 18, 24164, 10.1039/C6CP03933B Chen, 2016, Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction, Carbon, 100, 492, 10.1016/j.carbon.2016.01.045 da Silva, 2016, Coherent phonon transport in short-period two-dimensional superlattices of graphene and boron nitride, Phys. Rev. B, 93, 10.1103/PhysRevB.93.125427 Kinaci, 2012, Thermal conductivity of bn-c nanostructures, Phys. Rev. B, 86, 10.1103/PhysRevB.86.115410 Zhu, 2014, Phonon transport on two-dimensional graphene/boron nitride superlattices, Phys. Rev. B, 90, 10.1103/PhysRevB.90.195209 Jiang, 2011, Minimum thermal conductance in graphene and boron nitride superlattice, Appl. Phys. Lett., 99, 10.1063/1.3619832 Ong, 2016, Controlling the thermal conductance of Graphene/h–BN lateral interface with strain and structure engineering, Phys. Rev. B, 93, 10.1103/PhysRevB.93.075406 Sevinçli, 2011, Effects of domains in phonon conduction through hybrid boron nitride and graphene sheets, Phys. Rev. B, 84, 10.1103/PhysRevB.84.205444 Seol, 2010, Two-dimensional phonon transport in supported graphene, Science, 328, 213, 10.1126/science.1184014 Cai, 2010, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett., 10, 1645, 10.1021/nl9041966 Chen, 2013, Substrate coupling suppresses size dependence of thermal conductivity in supported graphene, Nanoscale, 5, 532, 10.1039/C2NR32949B Zhang, 2015, Bilateral substrate effect on the thermal conductivity of two-dimensional silicon, Nanoscale, 7, 6014, 10.1039/C4NR06523A Zhang, 2015, Molecular dynamics study of interfacial thermal transport between silicene and substrates, Phys. Chem. Chem. Phys., 17, 23704, 10.1039/C5CP03323C Wang, 2015, Thermal conductivity and spectral phonon properties of freestanding and supported silicene, J. Appl. Phys., 117, 10.1063/1.4913600 Correa, 2017, Interface thermal conductance of van der waals monolayers on amorphous substrates, Nanotechnol, 28, 10.1088/1361-6528/aa5e3d Zhang, 2017, Molecular dynamics simulation of the interfacial thermal resistance between phosphorene and silicon substrate, Int. J. Heat. Mass Tran, 104, 871, 10.1016/j.ijheatmasstransfer.2016.08.021 Medrano Sandonas, 2015, Engineering thermal rectification in mos2 nanoribbons: a non-equilibrium molecular dynamics study, RSC Adv., 5, 54345, 10.1039/C5RA05733G Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys., 117, 1, 10.1006/jcph.1995.1039 Munetoh, 2007, Interatomic potential for si-o systems using tersoff parameterization, Comp. Mater. Sci., 39, 334, 10.1016/j.commatsci.2006.06.010 Kumagai, 2007, Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation, Comp. Mater. Sci., 39, 457, 10.1016/j.commatsci.2006.07.013 Tersoff, 1989, Modeling solid-state chemistry: interatomic potentials for multicomponent systems, Phys. Rev. B, 39, 5566, 10.1103/PhysRevB.39.5566 Neek-Amal, 2014, Graphene on boron-nitride: moir pattern in the van der waals energy, Appl. Phys. Lett., 104, 10.1063/1.4863661 Bellido, 2010, Molecular dynamics simulations of folding of supported graphene, J. Phys. Chem. C, 114, 22472, 10.1021/jp108481x Pei, 2012, Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene, Appl. Phys. Lett., 100, 10.1063/1.3692173 Liu, 2014, Interface thermal conductance and rectification in hybrid graphene/silicene monolayer, Carbon, 79, 236, 10.1016/j.carbon.2014.07.064 Gordiz, 2014, Thermal rectification in pristine-hydrogenated carbon nanotube junction: a molecular dynamics study, J. Appl. Phys., 115, 10.1063/1.4873124 Lan, 2006, Thermal rectifying effect in two-dimensional anharmonic lattices, Phys. Rev. B, 74, 10.1103/PhysRevB.74.214305 Li, 2005, Interface thermal resistance between dissimilar anharmonic lattices, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.104302 Zhang, 2011, Thermal conduction and rectification in few-layer graphene y junctions, Nanoscale, 3, 4604, 10.1039/c1nr10945f Alaghemandi, 2010, Thermal rectification in nanosized model systems: a molecular dynamics approach, Phys. Rev. B, 81, 10.1103/PhysRevB.81.125410