Cải thiện khả năng tương thích, tính chất cơ học và khả năng chịu nhiệt của hỗn hợp poly(butylene succinate-co-terephthalate)/poly(butylene succinate) nhờ vào việc thêm chất kéo dài chuỗi và tác nhân tạo hạt nhân

Springer Science and Business Media LLC - Tập 30 - Trang 1-12 - 2023
Xiangyu Yan1,2, Ling Chen3, Hanlin Tian2, Shiling Jia2, Xiangyu Wang1, Hongwei Pan1, Lijing Han1, Junjia Bian1, Huili Yang1, Guangfeng Wu2, Yan Zhao1, Huiliang Zhang1,2
1Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
2School of Materials Science and Engineering, Changchun University of Technology, Changchun, China
3State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, China

Tóm tắt

Poly(butylene succinate-co-terephthalate) (PBST) là một copolymer aliphatic-aromatic với khả năng phân hủy sinh học xuất sắc và độ linh hoạt cao, có thể được sử dụng để thay thế các vật liệu polymer truyền thống không thể phân hủy trong nhiều lĩnh vực. Tuy nhiên, nhiệt độ biến dạng nhiệt tương đối thấp của nó hạn chế khả năng áp dụng. Trong nghiên cứu này, poly(butylene succinate) (PBS) đã được pha trộn với PBST để tăng cường khả năng chịu nhiệt của PBST. Chất kéo dài chuỗi ADR-4370F được sử dụng làm chất tương hợp phản ứng để cải thiện tính tương thích giữa PBST và PBS. Hợp chất hydrazide TMC-300 được sử dụng làm tác nhân tạo hạt nhân để cải thiện hành vi kết tinh của hỗn hợp PBST/PBS và chuẩn bị một hỗn hợp PBST/PBS mới và thân thiện với môi trường. Hình thái của bề mặt cryo-vỡ của các hỗn hợp PBST/PBS cho thấy rằng tính tương thích giữa PBST và PBS đã được cải thiện đáng kể khi thêm ADR. Hơn nữa, so với hỗn hợp PBST/PBS, mô đun Young, độ bền kéo, độ biến dạng khi đứt và năng lượng đứt của hỗn hợp PBST/PBS/ADR đã có sự cải thiện lớn. Ngoài ra, kết quả DSC cho thấy rằng nhiệt độ kết tinh (Tc) của PBST và PBS của hỗn hợp PBST/PBS/ADR/TMC tăng lên với sự gia tăng hàm lượng TMC. Kết quả WAXD cho thấy rằng mức độ kết tinh của các hỗn hợp PBST/PBS/ADR/TMC tăng lên với sự gia tăng PBS và TMC, làm tăng nhiệt độ mềm Vicat. So với PBST nguyên chất, khả năng chịu nhiệt của hỗn hợp dựa trên PBST/PBS đã được cải thiện.

Từ khóa

#PBST #PBS #copolymer #độ linh hoạt #tính tương thích #chất kéo dài chuỗi #tác nhân tạo hạt nhân #khả năng phân hủy sinh học #nhiệt độ biến dạng nhiệt.

Tài liệu tham khảo

Cross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807 Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10 Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602 Zhao Y, Zhao BH, Wei BL, Wei YX, Yao JR, Zhang HL, Chen X, Shao ZZ (2020) Enhanced compatibility between poly(lactic acid) and poly (butylene adipate-co-terephthalate) by incorporation of N-halamine epoxy precursor. Int J Biol Macromol 165:460–471 Zhao Y, Wei BL, Wu M, Zhang HL, Yao JR, Chen X, Shao ZZ (2020) Preparation and characterization of antibacterial poly(lactic acid) nanocomposites with N-halamine modified silica. Int J Biol Macromol 155:1468–1477 Luo SL, Li FX, Yu JY (2011) The thermal, mechanical and viscoelastic properties of poly(butylene succinate-co-terephthalate) (PBST) copolyesters with high content of BT units. J Polym Res 18:393–400 Luo SL, Li FX, Yu JY, Cao AM (2010) Synthesis of poly(butylene succinate-co- butylene terephthalate) (PBST) copolyesters with high molecular weights via direct esterification and polycondensation. J Appl Polym Sci 115:2203–2211 Li FX, Luo SL, Ma C, Yu JY, Cao AM (2010) The crystallization and morphology of biodegradable poly(butylene succinate-co-terephthalate) copolyesters with high content of BT units. J Appl Polym Sci 118:623–630 Wei ZZ, Lin JY, Wang XL, Huang LQ, Yu JY, Li FX (2015) In situ polymerization of biodegradable poly(butylene-co-succinate terephthalate) nanocomposites and their real-time tracking of microstructure. Compos Sci Technol 117:121–129 Wei ZZ, Liu YL, Wang XL, Yu JY, Li FX (2016) Real-time tracking of the hierarchical structure of biodegradable poly(butylene succinate-co-terephthalate) nanocomposites with fibrous attapulgite nanoparticles. Compos Sci Technol 134:201–208 Lin SH, Wang JM, Wang HT, Wu TM (2019) Synthesis, mechanical properties and biodegradation of various acrylic acid-grafted poly(butylene succinate-co- terephthalate)/organically modified layered zinc phenylphosphonate nanocomposites. Eur Polym J 116:1–8 Wang JM, Ding SJ, Wu TM (2020) Rheology, crystallization behavior, and mechanical properties of poly(butylene succinate-co-terephthalate)/cellulose nanocrystal composites. Polym Test 87:106551 Yan XY, Xie RH, Pan HW, Zhao T, Han LJ, Bian JJ, Yang HL, Zhao Y, Wu GF, Zhang HL (2022) Effect of 1,4-bis(tert-butyl peroxy isopropyl) benzene on the rheological, mechanical, thermal and barrier properties of poly(butylene succinate-co-terephthalate)/poly(lactic acid) blends and blown films. Mater Today Commun 31:103830 Wang XY, Pan HW, Jia SL, Wang ZP, Tian HL, Han LJ, Zhang HL (2022) In-situ reaction compatibilization modification of poly(butylene succinate-co-terephthalate)/polylactide acid blend films by multifunctional epoxy compound. Int J Biol Macromol 213:934–943 Bian JJ, Han LJ, Wang XM, Wen X, Han CY, Wang SS, Dong LS (2010) Nonisothermal crystallization behavior and mechanical properties of poly(butylene succinate)/silica nanocomposites. J Appl Polym Sci 116:902–912 Li Y, Han CY, Xiao LG, Yu YC, Zhou GB, Xu MZ (2021) Miscibility, morphology, and properties of poly(butylene succinate)/poly(vinyl acetate) blends. Colloid Polym Sci 299:105–116 Wang XM, Zhuang YG, Dong LS (2012) Study of carbon black-filled poly(butylene succinate)/polylactide blend. J Appl Polym Sci 126:1876–1884 Liu B, Guan TH, Wu G, Fu Y, Weng YX (2022) Biodegradation behavior of degradable mulch with poly(butylene adipate-co-terephthalate) (PBAT) and poly(butylene succinate) (PBS) in simulation marine environment. Polymers 14:1515 Gao JC, Wu YD, Li J, Peng XQ, Wang YDW, JC, Wang XH, Jin MJ, Yao ZW, Shen XJ, Wang S, Jin HL (2022) Toughening and heat-resistant modification of degradable PLA/PBS-based composites by using glass fiber/silicon dioxide hybrid fillers. Polymers 14:3237 Prasong W, Ishigami A, Thumsorn S, Kurose T, Ito H (2021) Improvement of interlayer adhesion and heat resistance of biodegradable ternary blend composite 3D printing. Polymers 13:740 Zhang KY, Mohanty AK, Misra M (2012) Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 4:091–3101 Li FX, Xu XJ, Hao QH, Li QB, Yu JY, Cao AM (2006) Effects of comonomer sequential structure on thermal and crystallization behaviors of biodegradable poly(butylene succinate-co-butylene terephthalate)s. J Appl Polym Sci 44:1635–1644 Zheng C, Zhu GX, Shi Y, Liu LZ, Ren MQ, Zhang W, Han L (2021) Crystallization, structures and properties of biodegradable poly (butylene succinate-co-butylene terephthalate) with a symmetric composition. Mater Chem Phys 260:124183 Urbanek AK, Mirończuk AM, García-Martín A, Saborido A, Mata I, Arroyo M (2020) Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. BBA-Proteins Proteom 1868:140315 Lee CW, Akashi M, Kimura Y, Masutani K (2017) Synthesis and enzymatic degradability of an aliphatic/aromatic block copolyester: poly(butylene succinate)-multi-poly(butylene terephthalate). Macromol Res 25:54–62 Wu DD, Guo Y, Huang AP, Xu RW, Liu P (2021) Effect of the multi-functional epoxides on the thermal, mechanical and rheological properties of poly(butylene adipate-co-terephthalate)/polylactide blends. Polym Bull 78:5567–5591 Zhang Y, Jia SL, Pan HW, Wang LJ, Zhang HL, Yang HL, Dong LS (2021) Preparation, characterization and properties of biodegradable poly(butylene adipate-co-butylene terephthalate)/thermoplastic poly(propylene carbonate) polyurethane blend films. Polym Adv Technol 32:613–629 Jia SL, Wang XY, Zhang Y, Yan XY, Pan HW, Zhao Y, Han LJ, Zhang HL, Dong LS, Zhang HX (2022) Superior toughened biodegradable poly(L-lactic acid)-based blends with enhanced melt strength and excellent low-temperature toughness via in-situ reaction compatibilization. Chinese J Polym Sci. https://doi.org/10.1007/s10118-022-2862-6 Liu S, He Y, Qu JP (2022) Manufacturing high-performance polylactide by constructing 3D network crystalline structure with adding self-assembly nucleator. Ind Eng Chem Res 61:4567–4578 Li CH, Jiang T, Wang JF, Peng SJ, Wu H, Shen JB, Guo SY, Zhang X, Harkin-Jones E (2018) Enhancing the oxygen-barrier properties of polylactide by tailoring the arrangement of crystalline lamellae. ACS Sustainable Chem Eng 6:6247–6255 Tang YJ, Wang YQ, Chen SH, Wang XD (2022) Fabrication of low-density poly(lactic acid) microcellular foam by self-assembly crystallization nucleating agent. Polym Degrad Stab 198:109891 Feng YQ, Ma PM, Xu PW, Wang RY, Dong WF, Chen MQ, Joziasse C (2018) The crystallization behavior of poly(lactic acid) with different types of nucleating agents. Int J Biol Macromol 106:955–962 Li XY, Yang LZ, Zhai GQ, Gao WQ, Wang KZ, Li XG (2021) Effect of nucleating agent on crystallization and properties of poly(butylene succinate). China Plastics 35:146–151 Wu DD, Xu RW, Zhang YH, Shi SX (2022) Influence of branching on the mechanical, rheological and crystallization properties of poly(butylene adipate-co-terephthalate). J Therm Anal Calorim 147:9539–9557 Xu PF, Tian HL, Han LJ, Yang HL, Bian JJ, Pan HW, Zhang HL (2022) Improved heat resistance in poly (lactic acid)/ethylene butyl methacrylate glycidyl methacrylate terpolymer blends by controlling highly filled talc particles. J Therm Anal Calorim 147:5719–5732 Yu T, Jiang N, Li Y (2014) Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride. Compos Part A 64:139–146 Deng L, Xu C, Wang XH, Wang ZG (2018) Supertoughened polylactide binary blend with high heat deflection temperature achieved by thermal annealing above the glass transition temperature. ACS Sustainable Chem Eng 6:480–490 Katekhong W, Wongphan P, Klinmalai P, Harnkarnsujarit N (2022) Thermoplastic starch blown films functionalized by plasticized nitrite blended with PBAT for superior oxygen barrier and active biodegradable meat packaging. Food Chem 374:131709 Li Y, Yu YC, Han CY, Wang XH, Huang DX (2020) Sustainable blends of poly(propylene carbonate) and stereocomplex polylactide with enhanced rheological properties and heat resistance Chinese J Polym Sci 38:1267–1275 Zhao HW, Liu H, Liu YQ, Yang Y (2020) Blends of poly(butylene adipate-co-terephthalate) (PBAT) and stereocomplex polylactide with improved rheological and mechanical properties. RSC Adv 10:10482–10490