Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications

International Journal of Heat and Mass Transfer - Tập 54 Số 5-6 - Trang 1064-1070 - 2011
Donghyun Shin1, Debjyoti Banerjee1
1Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 3123, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wen, 2009, Review of nanofluids for heat transfer applications, Particuology, 7, 141, 10.1016/j.partic.2009.01.007

Wang, 2007, Heat transfer characteristics of nanofluids: a review, Int. J. Therm. Sci., 46, 1, 10.1016/j.ijthermalsci.2006.06.010

Keblinski, 2005, Nanofluids for thermal transport, Mater. Today, 8, 36, 10.1016/S1369-7021(05)70936-6

Henderson, 2009, Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube, Int. J. Heat Mass Transfer, 53, 944, 10.1016/j.ijheatmasstransfer.2009.11.026

J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, Enhanced thermal conductivity through the development of nanofluids, in: Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, vol. 457, Materials Research Society, 1997, pp. 3–11.

Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3

Murshed, 2005, Enhanced thermal conductivity of TiO2–water based nanofluids, Int. J. Therm. Sci., 44, 367, 10.1016/j.ijthermalsci.2004.12.005

Choi, 2001, Anomalous thermal conductivity enhancement in nanotubes suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272

Kang, 2006, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer, 19, 181, 10.1080/08916150600619281

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME J. Heat Transfer, 125, 567, 10.1115/1.1571080

Patel, 2003, Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects, Appl. Phys. Lett., 83, 2931, 10.1063/1.1602578

Xuan, 2000, Conceptions for heat transfer correlation of nanofluids, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5

Keblinski, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45, 855, 10.1016/S0017-9310(01)00175-2

Kumar, 2004, Model for heat conduction in nanofluids, Phys. Rev. Lett., 93, 144301, 10.1103/PhysRevLett.93.144301

Jang, 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684

Prasher, 2006, Brownian-motion-based convective–conductive model for the effective thermal conductivity of nanofluids, ASME J. Heat Transfer, 128, 588, 10.1115/1.2188509

Patel, 2008, A cell model approach for thermal conductivity of nanofluids, J. Nanoparticle Res., 10, 87, 10.1007/s11051-007-9236-4

Keblinski, 2008, Thermal conductance of nanofluids: is the controversy over?, J. Nanoparticle Res., 10, 1089, 10.1007/s11051-007-9352-1

Evans, 2008, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposite and colloidal nanofluids, Int. J. Heat Mass Transfer, 51, 1431, 10.1016/j.ijheatmasstransfer.2007.10.017

Nelson, 2009, Flow loop experiments using polyalphaolefin, J. Thermophys. Heat Transfer, 23, 752, 10.2514/1.31033

Shin, 2011, Enhanced specific heat of silica nanofluid, ASME J. Heat Transfer, 133, 024501, 10.1115/1.4002600

Zhou, 2008, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Appl. Phys. Lett., 92, 093123, 10.1063/1.2890431

Price, 2002, Advances in parabolic trough solar power technology, J. Solar Energy Eng., 124, 109, 10.1115/1.1467922

G.J. Janz, C.B. Allen, N.P. Bansal, R.M. Murphy, R.P.T. Tomkins, Physical Properties Data Compilations Relevant to Energy Storage, II. Molten Salts: Data on Single and Multi-component Systems, US Govt. Print. Off., Washington, DC, 1979, p. 431.

Buongiorno, 2006, Convective transport in nanofluids, J. Heat Transfer, 128, 240, 10.1115/1.2150834

Araki, 2005, Measurement of thermophysical properties of molten salts: Mixtures of alkaline carbonate salts, Int. J. Thermophys., 9, 1071, 10.1007/BF01133274

Wang, 2006, Surface and size effects on the specific heat capacity of nanoparticles, Int. J. Thermophys., 27, 139, 10.1007/s10765-006-0022-9

Wang, 2004, Enhancement of molar heat capacity of nanostructured Al2O3, J. Nanoparticle Res., 3, 483, 10.1023/A:1012514216429

Xue, 2004, Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer, 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016

Li, 2010, Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids, J. Nanoparticle Res., 12, 811, 10.1007/s11051-009-9728-5

Oh, 2005, Ordered liquid aluminum at the interface with sapphire, Science, 310, 661, 10.1126/science.1118611