Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nâng cao chất lượng thịt cá hồi cầu vồng (Oncorhynchus mykiss) bằng cách bổ sung đại mạch vào chế độ ăn mà không gây ảnh hưởng tiêu cực đến các yếu tố nuôi trồng
Tóm tắt
Các nồng độ đại mạch dao động từ 0 đến 32% (0B, 40B, 80B, 160B, và 319B) đã được bổ sung vào khẩu phần ăn của cá hồi cầu vồng, Oncorhynchus mykiss (Walbaum). Thí nghiệm bắt đầu với trọng lượng cá trung bình ban đầu là 127,72 ± 5,65 g và kết thúc khi chúng đạt trọng lượng thương mại (trọng lượng cuối cùng từ 312 đến 330 g) sau 84 ngày. Việc bổ sung đại mạch vào khẩu phần ăn không cho thấy ảnh hưởng đáng kể đến tăng trưởng và các chỉ số sinh học, khả năng tiêu hóa chất béo và carbohydrate; tuy nhiên, khả năng tiêu hóa protein đã giảm đáng kể khi có sự bổ sung đại mạch vào chế độ ăn. Mức glucose tăng đáng kể theo nồng độ đại mạch trong chế độ ăn, và mức lactate cùng cortisol cũng bị ảnh hưởng đáng kể sau một thời gian bị căng thẳng, bất kể chế độ ăn uống. Chất lượng thịt cũng bị ảnh hưởng bởi nồng độ đại mạch. Các giá trị hoạt động nước thấp hơn và sự cải thiện về tính chất kết cấu và màu sắc được quan sát thấy ở những con cá ăn chế độ có nồng độ đại mạch cao nhất. Cá hồi được cho ăn thức ăn có nồng độ đại mạch cao hơn (160B) cho thấy mức độ oxy hóa lipid thấp hơn so với những cá được cho ăn với nồng độ thấp hơn (đối chứng và 40B). Ban cảm quan đã nhận thấy rằng cá được cho ăn với khẩu phần có đại mạch cao hơn 8% (80B) thể hiện màu đỏ tươi hơn ở mang và kết cấu tốt hơn; đồng thời, màu thịt trở nên đỏ hơn với sự bổ sung đại mạch cao hơn (160B và 319B), tất cả các tham số cảm quan này đều có mối tương quan với độ tươi của cá. Do đó, kết quả cho thấy đại mạch có thể được thay thế cho phần lúa mì mà không gây ảnh hưởng xấu đến hiệu quả sản xuất và nâng cao chất lượng cá.
Từ khóa
#đại mạch #cá hồi cầu vồng #chất lượng thịt #tiêu hóa protein #nồng độ glucoseTài liệu tham khảo
A.O.A.C., Association of Official Analytical Chemists (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington 1298 pp
Ai Q, Mai K, Zhang L, Tan B, Zhang W, Xu W, Li H (2007) Effects of dietary β-1,3- glucan on innate immune response on large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immun 22:394–402
APROMAR 2014 La acuicultura en España 2013. Report by the Spanish Association of marine Aquaculture (APROMAR) and the Spanish Association of Freshwater Aquaculture (ESCUA). Available at: http://www.apromar.es/content/la-acuicultura-en-españa-2014
Asghari M, Shabanpour B, Pakravan S (2014) Evaluation of some qualitative variations in frozen fillets of beluga (Huso huso) fed by different carbohydrate to lipid ratios. J Food Sci Tech 51(3):430–439
Atkinson JL, Hilton JW, Slinger SJ (1984) Evaluation of acid-insoluble ash as an indicator of feed digestibility in rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 41:1384–1386
Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold M, Izquierdo MS (2002) Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214:253–271
Casas C, Martinez O, Guillen MD, Pin C, Salmeron J (2006) Textural properties of raw Atlantic salmon (Salmo salar) at three points along the fillet, determined by different methods. Food Control 17:511–515
Chang C-F, Su M-S, Chen H-Y, Liao I-C (2003) Dietary β-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immun 15:297–310
Cheng ZJ, Hardy RW (2002) Effect of microbial phytase on apparent nutrient digestibility of barley, canola meal, wheat and wheat middlings, measured in vivo using rainbow trout (Oncorhynchus mykiss). Aquac Nutr 8:271–277
Cheng ZJ, Hardy RW (2003) Effects of extrusion processing of feed ingredients on apparent digestibility coefficients of nutrients for rainbow trout (Oncorhynchus mykiss). Aquac Nutr 9:77–83
Cho CY, Slinger SJ, Bayley HS (1982) Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comp Biochem Physiol 73B:25–41
Couto A, Peres H, Oliva-Teles A, Enes P (2016) Screening of nutrient digestibility, glycaemic response and gust morphology alterations in gilthead seabream (Sparus aurata) fed whole cereal meals. Aquaculture 450:31–37
Dalmo RA, Bøgwald J (2008) Β-Glucans as conductors of immune symplhonies. Review. Fish Shellfish Immun 25:384–396
Flores-Quintana C (2002) Respuestas neuroendocrinas al estrés en peces teleósteos. Rev ictiol 10(1/2):57–78
García-Riera MP, Hemre G-I (1996) Effect of adaptation to three different levels of dietary carbohydrates on the incorporation of 14C-glucose in several organs of Atlantic halibut (Hippoglosus hippoglossus). Aquac Res 27:565–571
Gatlin DM, Barrows F, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579
Gaylord TG, Barrows FT, Rawles SD, Liu K, Bregitzer P, Hang A, Obert DE, Morris C (2009) Apparent digestibility of nutrients and energy in extruded diets from cultivars of barley and wheat selected for nutritional quality in rainbow trout Oncorhynchus mykiss. Aquac Nutr 15:306–312
Ghaedi G, Keyvanshokooh S, Azarm HM, Akhlaghi M (2015) Effects of dietary β-glucan on maternal immunity and fry quality of rainbow trout (Oncorhynchus mykiss). Aquaculture 441:78–83
Grisdale-Helland B, Helland SJ (1997) Replacemente of protein by fat and carbohydrate in diets for Atlantic salmon (Salmo salar) at the end of the freshwater stage. Aquaculture 152:167–180
Gu M, Ma H, Mai K, Zhang W, Bai N, Wang X (2011) Effects of dietary β-glucan, mannan oligosaccharide and their combinations on growth performance, immunity and resistance against Vibrio splendidus of sea cucumber, Apostichopus japonicus. Fish Shellfish Immun 31:303–309
Hai NV, Fotedar R (2009) Comparison of the effects of the prebiotics (Bio-Mos® and β-1,3-D-glucan) and the customized probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus kishinouye, 1896). Aquaculture 289:310–316
Heidarieh M, Mivaghefi AR, Akbari A, Sheikhzadeh N, Kamyabi-Moghaddam Z, Askari H, Shahbazfar AA (2012) Evaluation of Hilyses™, fermented Saccharomyces cerevisiae, on rainbow trout (Oncorhynchus mykiss) growth performance, enzymatic activities and gastrointestinal structure. Aquac Nutr 19:343–348. doi:10.1111/j.1365-2095.2012.00973.x
Hemre G-I (1992) Studies on carbohydrate nutrition in Cod (Gadus morhua). Dr. scientiarum Thesis. Institute of Nutrition, University of Bergen, Norway
Hemre G-I, Krogdahl Å (1996) The effect of handling and fish size on the secondary changes in carbohydrate metabolism in Atlantic salmon (Salmo salar). Aquac Nutr 2:249–252
Hemre G-I, Mommsen TP, Krogdahl Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194
Hixson SM (2014) Fish nutrition and current issues in aquaculture: the balance in providing safe and nutritious seafood, in an environmentally sustainable manner. J Aquac Res Dev 5:234. doi:10.4172/2155-9546.1000234
ISO 8586-1:2001 (2001) Sensory analysis—general guidance for the selection, training and monitoring of assessors—part 1: selected assessors (International Organization for Standardization)
ISO 8586-2: 2008 (2008) Sensory analysis—general guidance for the selection, training and monitoring of assessors—part 2: expert sensory assessors (International Organization for Standardization)
ISO 8589: 2007 (2007) Sensory analysis—general guidance for the design of test rooms (International Organization for Standardization)
Jeney G, Galeotti M, Volpatti D, Anderson DP (1997) Prevention of stress in rainbow trout (Oncorhynchus mykiss) fed diets containing different doses of glucan. Aquaculture 154:1–15
Kaplan LA, Pesce AJ (1984) Clinical chemistry: theory, analysis, and correlation. Mosby, St. Louis, pp 1032–1036
Krogdahl Å, Sundby A, Olli JJ (2004) Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) digest and metabolize nutrients differently. Effects of water salinity and dietary starch level. Aquaculture 229:335–360
Krogdahl Å, Hemre GI, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac Nutr 11:103–122
Kumar V, Sinha AK, Makkar HPS, De Boeck G, Becker K (2012) Phytate and phytase in fish nutrition. Review article. J Anim Physiol An N 96:335–364
Lakshmanan PT (2000) Fish spoilage and quality assessment. In: Lyre TSG, Kandoran MK, Thomas M, Mathew PT (eds) Quality assurance in seafood processing. Society Fisher Techno (India), Cochin, pp 26–40
Lazaridou A, Biliaderis CG (2007) Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. J Cereal Sci 46:101–118
Lin S, Pan Y, Luo L, Luo L (2011) Effects of dietary β-1,3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of loi (Cyprinus carpio koi). Fish Shellfish Immun 31:788–794
Lokesh J, Fernandes JMO, Korsnes K, Bergh Ø, Brinchmann MF (2012) Transcriptional regulation of cytokines in the intestine of Atlantic cod fed yeast derived mannan oligosaccharide or β-glucan and challenged with Vibrio anguillarum. Fish Shellfish Immun 33:626–631
MAGRAMA. Ministerio de Agricultura, Alimentación y Medio Ambiente (2015) Gobierno de España. Available at: http://www.mapama.gob.es/es/pesca/temas/acuicultura/produccion-de-acuicultura/default.aspx
Martinsdóttir E, Sveinsdóttir K, Luten J, Schelvis-Smit R, Hyldig G (2001) La evaluación sensorial de la frescura del pescado. Manual de referencia para el sector pesquero. Icelandic Fisheries Laboratories. Available at: QIM Eurofish. URL http://qim-eurofish.com
Meena DK, Das P, Kumar S, Mandal SC, Prusty AK, Singh SK, Akhtar MS, Behera BK, Kumar K, Pal AK, Mukherjee SC (2013) Beta-glucan: an ideal immunostimulant in aquaculture. Fish Physiol Biochem 39:431–457
Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action and metabolic regulation. Rev Fish Biol Fisher 9:211–268
Morken T, Kraugerud OF, Barrows FT, Sørensen M, Storebakken T, Øverland M (2011) Sodium diformate and extrusion temperature affect nutrient digestibility and physical quality of diets with fish meal and barley protein concentrate for rainbow trout (Oncorhynchus mykiss). Aquaculture 317:138–145
Ortiz J, Lemus-Mondaca R, Vega-Gálvez A, Ah-hen K, Puente-Díaz L, Zura-Bravo L, Aubourg S (2013) Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets. Food Chem 139:162–169
Overturf K, Raboy V, Cheng ZJ, Hardy RW (2003) Mineral availability from barley low phytic acid grains in rainbow trout (Oncorhynchus mykiss) diets. Aquac Nutr 9:239–246
Popelka M, Marcinčák S, Maskal’ová I, Guothová L, Čertík M (2014) Comparison of the chemical composition and nutritional values of fresh and frozen rainbow trout. Slov Vet Res 51(2):73–80
Pratoomyot J, Bendiksen EÅ, Bell JG, Tocher DR (2010) Effects of increasing replacement of dietary fishmeal with plant protein sources on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture 305:124–132
Sealey WM, Barrows FT, Hang A, Johansen KA, Overturf K, LaPatra SE, Hardy RW (2008) Evaluation of the ability of barley genotypes containing different amounts of β-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Anim Feed Sci Tech 141:115–128
Skrede G, Storebakken T, Skrede A, Sahlstrøm S, Sørensen M, Shearer KD, Slinde E (2002) Lactic acid fermentation of wheat and barley whole meal flours improves digestibility of nutrients and energy in Atlantic salmon (Salmo salar L.) diets. Aquaculture 210:305–321
Stone DAJ (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11(4):337–369
Storebakken T, Shearer KD, Refstie S, Lagocki S, McCool J (1998) Interactions between salinity, dietary carbohydrate source and carbohydrate concentration on the digestibility of macronutrients and energy in rainbow trout (Oncorhynchus mykiss). Aquaculture 163:347–359
Thomas L (Hrsg.) (1992) Labor und Diagnose, 4. Auflage. Marburg; Die MedizinischeVerlagsgesellschaft
Valente LMP, Rema P, Ferraro V, Pintado M, Sousa-Pinto I, Cunha LM, Oliveira MB, Araújo M (2015) Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture 446:132–139
Vyncke W (1975) Evaluation of the direct thiobarbituric acid extraction method for determining oxidative rancidity in mackerel (Scomber scombrus L.). Fette, Seifen, Anstrichmittel 77(6):239–240
Walton MJ (1986) Metabolic effects of feeding a high protein/low carbohydrate diet as compared to a low protein/high carbohydrate diet in rainbow trout (Salmo gairdneri). Fish Physiol Biochem 1(1):7–15
Xu Y, Liu Y, Zhang C, Li X, Yi S, Li J (2015) Physicochemical responses and quality changes of turbot (Psetta maxima) during refrigerated storage. Int J Food Prop. doi:10.1080/1094.2912.2015.1022260. In press
Yildiz M (2004) The study of fillet quality and the growth performance of rainbow trout (Oncorhynchus mykiss) fed with diets containing different amounts of vitamin E. Turk J Fish Aquat Sc 4:81–86