Enhancement of euryhaline Asterarcys quadricellulare biomass production for improving biogas generation through anaerobic co-digestion with carbon rich substrate

3 Biotech - Tập 11 Số 5 - 2021
Rouf Ahmad Dar1, Rajeev Kumar Gupta2, Urmila Gupta Phutela3
1Department of Microbiology, Punjab Agricultural University, Ludhiana (Punjab 141004, India
2Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
3Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab, 141004, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allen E, Wall DM, Herrmann C, Xia A, Murphy JD (2015) What is the gross energy yield of third generation gaseous biofuel sourced from seaweed? Energy 81:352–360. https://doi.org/10.1016/j.energy.2014.12.048

AOAC (2000) Association of official analytical chemists, official methods of analysis, 17th edn. AOAC, Maryland

Ayala-Parra P, Liu Y, Field JA, Sierra-Alvarez R (2017) Nutrient recovery and biogas generation from the anaerobic digestion of waste biomass from algal biofuel production. Renew Energy 108:410–416. https://doi.org/10.1016/j.renene.2017.02.085

Baek G, Kim J, Lee C (2019) A review of the effects of iron compounds on methanogenesis in anaerobic environments. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2019.109282

Barbot YN, Al-Ghaili H, Benz R (2016) A review on the valorization of macroalgal wastes for biomethane production. Mar Drugs. https://doi.org/10.3390/md14060120

Bellinger EG, Sigee DC (2010) Freshwater algae : identification, enumeration and use as bioindicators. Wiley, Chichester

Bhuvaneshwari S, Hettiarachchi H, Meegoda J (2019) Crop residue burning in India: policy challenges and potential solutions. Int J Environ Res Public Health 16:832. https://doi.org/10.3390/ijerph16050832

Borowitzka MA, Moheimani NR (2013) Algae for biofuels and energy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5479-9

Bożym M, Florczak I, Zdanowska P, Wojdalski J, Klimkiewicz M (2015) An analysis of metal concentrations in food wastes for biogas production. Renew Energy 77:467–472. https://doi.org/10.1016/J.RENENE.2014.11.010

Bruno WJ, Socci ND, Halpern AL (2000) Weighted Neighbor Joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 17:189–197. https://doi.org/10.1093/oxfordjournals.molbev.a026231

Chen H, Qiu T, Rong J, He C, Wang Q (2015) Microalgal biofuel revisited: an informatics-based analysis of developments to date and future prospects. Appl Energy. https://doi.org/10.1016/j.apenergy.2015.06.055

Cui P, Dou TY, Sun YP, Li SY, Feng L, Zou L-W, Wang P, Hao DC, Ge GB, Yang L (2016) Efficient enzymatic preparation of esculentoside B following condition optimization by response surface methodology. J Mol Catal B Enzym 130:25–31. https://doi.org/10.1016/J.MOLCATB.2016.04.013

Dar RA, Phutela UG (2020) Enzymatic and hydrothermal pretreatment of newly isolated Spirulina subsalsa BGLR6 biomass for enhanced biogas production. Waste Biomass Valorization 11:3639–3651. https://doi.org/10.1007/s12649-019-00712-y

Dar RA, Arora M, Phutela UG (2019) Optimization of cultural factors of newly isolated microalga Spirulina subsalsa and its co-digestion with paddy straw for enhanced biogas production. Bioresour Technol Rep 5:185–198. https://doi.org/10.1016/J.BITEB.2019.01.009

Dayana Priyadharshini S, Bakthavatsalam AK (2016) Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman Design and Response Surface Methodology. Bioresour Technol 207:150–156. https://doi.org/10.1016/j.biortech.2016.01.138

Dębowski M, Zieliński M, Grala A, Dudek M (2013) Algae biomass as an alternative substrate in biogas production technologies—review. Renew Sustain Energy Rev 27:596–604. https://doi.org/10.1016/j.rser.2013.07.029

Difusa A, Talukdar J, Kalita MC, Mohanty K, Goud VV (2015) Effect of light intensity and pH condition on the growth, biomass and lipid content of microalgae Scenedesmus species. Biofuels 6:37–44. https://doi.org/10.1080/17597269.2015.1045274

DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

El-baky HHA, Baz FKE, El-baroty GS (2008) Characterization of nutraceutical compounds in bue green alga Spirulina maxima. J Biotechnol 3:87–97

Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB (2018) Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res 31:347–362. https://doi.org/10.1016/j.algal.2017.11.038

Fenton O, Ó Huallacháin D (2012) Agricultural nutrient surpluses as potential input sources to grow third generation biomass (microalgae): a review. Algal Res 1:49–56. https://doi.org/10.1016/j.algal.2012.03.003

Fermoso FG, Beltran C, Jimenez A, Fernández MJ, Rincón B, Borja R, Jeison D (2016) Screening of biomethane production potential from dominant microalgae. J Environ Sci Health Part A Toxic/Hazardous Subst Environ Eng 51:1062–1067. https://doi.org/10.1080/10934529.2016.1198627

Formighieri C (2015) Solar-to-Fuel Conversion in algae and cyanobacteria. Springer Briefs Environ Sci. https://doi.org/10.1007/978-3-319-16730-5

Ganesh Saratale R, Kumar G, Banu R, Xia A, Periyasamy S, Dattatraya Saratale G (2018) A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour Technol 262:319–332. https://doi.org/10.1016/j.biortech.2018.03.030

Guo Q, Majeed S, Xu R, Zhang K, Kakade A, Khan A, Hafeez FY, Mao C, Liu P, Li X (2019) Heavy metals interact with the microbial community and affect biogas production in anaerobic digestion: A review. J Environ Manage 240:266–272. https://doi.org/10.1016/j.jenvman.2019.03.104

Habagil M, Keucken A, Sárvári Horváth I (2020) Biogas production from food residues—the role of trace metals and co-digestion with primary sludge. Environments 7:42. https://doi.org/10.3390/environments7060042

He Q, Yang H, Wu L, Hu C (2015) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228. https://doi.org/10.1016/j.biortech.2015.05.021

Hirano S, Matsumoto N, Morita M, Sasaki K, Ohmura N (2013) Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus. Lett Appl Microbiol 56:315–321. https://doi.org/10.1111/lam.12059

Iasimone F, Panico A, De Felice V, Fantasma F, Iorizzi M, Pirozzi F (2018) Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: Biomass production, lipids accumulation and settleability characteristics. J Environ Manage 223:1078–1085. https://doi.org/10.1016/j.jenvman.2018.07.024

Jankowska E, Sahu AK, Oleskowicz-Popiel P (2017) Biogas from microalgae: review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sustain Energy Rev 75:692–709. https://doi.org/10.1016/j.rser.2016.11.045

Kaushik R, Saran S, Isar J, Saxena RK (2006) Statistical optimization of medium components and growth conditions by response surface methodology to enhance lipase production by Aspergillus carneus. J Mol Catal B Enzym 40:121–126. https://doi.org/10.1016/j.molcatb.2006.02.019

Kerrison PD, Stanley MS, Edwards MD, Black KD, Hughes AD (2015) The cultivation of European kelp for bioenergy: Site and species selection. Biomass Bioenerg. https://doi.org/10.1016/j.biombioe.2015.04.035

Kim B-H, Ramanan R, Cho D-H, Choi G-G, La H-J, Ahn C-Y, Oh H-M, Kim H-S (2012) Simple, rapid and cost-effective method for high quality nucleic acids extraction from different strains of Botryococcus braunii. PLoS ONE 7:e37770. https://doi.org/10.1371/journal.pone.0037770

Kishore G, Kadam AD, Daverey A, Arunachalam K (2017) Isolation and evaluation of cultivation conditions of Euglena sp. from Western Himalaya for biofuel production. Biofuels 9:221–228. https://doi.org/10.1080/17597269.2017.1327169

Klassen V, Blifernez-Klassen O, Wibberg D, Winkler A, Kalinowski J, Posten C, Kruse O (2017) Highly efficient methane generation from untreated microalgae biomass. Biotechnol Biofuels 10:186. https://doi.org/10.1186/s13068-017-0871-4

Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol. https://doi.org/10.1016/j.copbio.2010.03.012

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

Lee E, Jalalizadeh M, Zhang Q (2015) Growth kinetic models for microalgae cultivation: a review. Algal Res. https://doi.org/10.1016/j.algal.2015.10.004

Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Elsevier, Amsterdam, pp 350–382. https://doi.org/10.1016/0076-6879(87)48036-1

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem. 193:265–275

Magdalena J, Ballesteros M, González-Fernandez C (2018) Efficient anaerobic digestion of microalgae biomass: proteins as a key macromolecule. Molecules 23:1098. https://doi.org/10.3390/molecules23051098

Mahdy A, Ballesteros M, González-Fernández C (2016) Enzymatic pretreatment of Chlorella vulgaris for biogas production: Influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency. Bioresour Technol 199:319–325. https://doi.org/10.1016/J.BIORTECH.2015.08.080

Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sustain Energy Rev 36:412–427. https://doi.org/10.1016/j.rser.2014.04.039

Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N (2020) Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants. https://doi.org/10.3390/plants9010031

Milledge JJ, Heaven S (2014) Methods of energy extraction from microalgal biomass: a review. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-014-9339-1

Milledge JJ, Staple A, Harvey PJ (2015) Slow pyrolysis as a method for the destruction of Japanese Wireweed, Sargassum muticum. Environ Nat Resour Res. https://doi.org/10.5539/enrr.v5n1p28

Milledge J, Nielsen B, Maneein S, Harvey P (2019) A brief review of anaerobic digestion of Algae for Bioenergy. Energies 12:1166. https://doi.org/10.3390/en12061166

Mishra SK, Suh WI, Farooq W, Moon M, Shrivastav A, Park MS, Yang J-W (2014) Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155:330–333. https://doi.org/10.1016/j.biortech.2013.12.077

Mitra M, Patidar SK, George B, Shah F, Mishra S (2015) A euryhaline Nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production. Algal Res 8:161–167. https://doi.org/10.1016/J.ALGAL.2015.02.006

Montgomery DC (2005) Design and analysis of experiments: response surface method and designs. Wiley, New York

Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10:1383–1398. https://doi.org/10.1007/s13762-012-0167-y

Nsair A, Onen Cinar S, Alassali A, Abu Qdais H, Kuchta K (2020) Operational parameters of biogas plants: a review and evaluation study. Energies 13:3761. https://doi.org/10.3390/en13153761

Nzayisenga JC, Farge X, Groll SL, Sellstedt A (2020) Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol Biofuels. https://doi.org/10.1186/s13068-019-1646-x

Paulo LM, Stams AJM, Sousa DZ (2015) Methanogens, sulphate and heavy metals: a complex system. Rev Environ Sci Biotechnol. https://doi.org/10.1007/s11157-015-9387-1

Pham H (2019) A new criterion for model selection. Mathematics 7:1215. https://doi.org/10.3390/math7121215

Prajapati SK, Malik A, Vijay VK, Sreekrishnan TR (2015) Enhanced methane production from algal biomass through short duration enzymatic pretreatment and codigestion with carbon rich waste. RSC Adv 5:67175–67183. https://doi.org/10.1039/C5RA12670C

Ramos-Suárez JL, Martínez A, Carreras N (2014) Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production. Energy Convers Manag 88:1263–1270. https://doi.org/10.1016/j.enconman.2014.02.064

Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12:153–164. https://doi.org/10.1007/s11157-013-9310-6

Ratha SK, Prasanna R, Gupta V, Dhar DW, Saxena AK (2012) Bioprospecting and indexing the microalgal diversity of different ecological habitats of India. World J Microbiol Biotechnol 28:1657–1667. https://doi.org/10.1007/s11274-011-0973-2

Richards LA, Allison L, Bernstein CA, Bower JW, Brown M, Fireman JT, Hatcher HE, Hayward GA, Pearson RC, Reeve LE, Richards Wilcox AL (1954) Diagnosis and improvement of saline and alkaline soils. Soil Sci Soc Am J 18:348. https://doi.org/10.2136/sssaj1954.03615995001800030032x

Richmond A (ed) (2003) Handbook of microalgal culture. Blackwell Publishing Ltd, Oxford. https://doi.org/10.1002/9780470995280

Ryan Georgianna D, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature. https://doi.org/10.1038/nature11479

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

Saratale GD, Jung MY, Oh MK (2016) Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production. Bioresour Technol 205:90–96. https://doi.org/10.1016/j.biortech.2016.01.028

Scholz M (2004) Case study: Design, operation, maintenance and water quality management of sustainable storm water ponds for roof runoff. Bioresour Technol 95:269–279. https://doi.org/10.1016/j.biortech.2003.07.015

Singh S (2013) Water logging and its effect on cropping pattern and crop productivity in South-West Punjab: a case study of Muktsar district. J Econ Soc Dev 9:71–80

Singh SP, Singh P (2015) Effect of temperature and light on the growth of algae species: a review. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2015.05.024

Soares BM, Vieira AA, Lemões JS, Santos CMM, Mesko MF, Primel EG, Montes D’Oca MG, Duarte FA (2012) Investigation of major and trace element distribution in the extraction–transesterification process of fatty acid methyl esters from microalgae Chlorella sp. Bioresour Technol 110:730–734. https://doi.org/10.1016/j.biortech.2012.01.148

Solé-Bundó M, Garfí M, Matamoros V, Ferrer I (2019) Co-digestion of microalgae and primary sludge: effect on biogas production and microcontaminants removal. Sci Total Environ 660:974–981. https://doi.org/10.1016/j.scitotenv.2019.01.011

Srivastava G, Kumar V, Tiwari R, Patil R, Kalamdhad A, Goud V (2020) Anaerobic co-digestion of defatted microalgae residue and rice straw as an emerging trend for waste utilization and sustainable biorefinery development. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-020-00736-8

Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

Sydney EB, da Silva TE, Tokarski A, Novak AC, de Carvalho JC, Woiciecohwski AL, Larroche C, Soccol CR (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energy 88:3291–3294. https://doi.org/10.1016/j.apenergy.2010.11.024

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121

Vintiloiu A, Lemmer A, Oechsner H, Jungbluth T (2012) Mineral substances and macronutrients in the anaerobic conversion of biomass: an impact evaluation. Eng Life Sci 12:287–294. https://doi.org/10.1002/elsc.201100159

Wehr JD, Sheath RG, Kociolek JP (2003) Freshwater algae of North America: ecology and classification. Elsevier, Amsterdam

Zhang W, Wei Q, Wu S, Qi D, Li W, Zuo Z, Dong R (2014) Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions. Appl Energy 128:175–183. https://doi.org/10.1016/j.apenergy.2014.04.071

Zhang W, Zhang L, Li A (2015) Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability. Water Res 84:266–277. https://doi.org/10.1016/j.watres.2015.07.010

Zhen G, Lu X, Kobayashi T, Kumar G, Xu K (2016) Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: Kinetic modeling and synergistic impact evaluation. Chem Eng J 299:332–341. https://doi.org/10.1016/j.cej.2016.04.118