Hoạt động quang xúc tác cực tím được cải thiện của hạt nano Ag/ZnO tổng hợp bằng phương pháp gel mạng polymer biến đổi

Springer Science and Business Media LLC - Tập 17 - Trang 1-15 - 2015
Y. H. Lu1, M. Xu1, L. X. Xu2, C. L. Zhang1, Q. P. Zhang1, X. N. Xu1, S. Xu2, K. Ostrikov3,4
1Key Laboratory of Information Materials of Sichuan Province, School of Electrical and Information Engineering, Southwest University for Nationalities, Chengdu, China
2Plasma Sources and Applications Center, NIE, Nanyang Technological University, Singapore, Singapore
3Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Australia
4Plasma Nanoscience Laboratories, Industrial Innovation Program, Manufacturing Flagship, CSIRO, Lindfield, Australia

Tóm tắt

Các cấu trúc dị thể hạt nano Ag/ZnO được tổng hợp thông qua một phương pháp gel mạng polymer biến đổi, trong đó glucose được thêm vào dung dịch tiền chất để ngăn chặn sự co lại đáng kể của gel trong quá trình làm khô dung dịch nước. Các tính chất cấu trúc và quang học của mẫu được đặc trưng bởi một loạt các kỹ thuật bao gồm XRD, SEM, TEM, XPS, UV–Vis, và PL. Cấu trúc dị thể Ag-ZnO có chất lượng cao được chứng minh rõ ràng bằng TEM độ phân giải cao. Các nanocomposite Ag/ZnO cấu trúc dị thể thể hiện hoạt động quang xúc tác cao hơn trong việc phân hủy methyl orange so với ZnO nguyên chất. Đặc biệt, các cấu trúc hạt nano Ag/ZnO với tỷ lệ mol Ag/Zn là 5:95 (mẫu ZA-5) cho thấy hiệu suất phân hủy cao nhất, gấp 11 lần so với ZnO nguyên chất. Các tính chất phát quang của các cấu trúc dị thể và trạng thái khiếm khuyết O được nghiên cứu để giải thích tốt các hiệu ứng quang xúc tác đã quan sát. ZA-5 cũng thể hiện hoạt động quang xúc tác cạnh tranh trong việc phân hủy các nhuộm ô nhiễm khác như Methylene blue và Rhodamine B so với các kỹ thuật đã được báo cáo gần đây, đồng thời cho thấy độ ổn định quang xúc tác tuyệt vời cũng như tính đơn giản và độ tin cậy.

Từ khóa

#Ag/ZnO nanoparticles #quang xúc tác #methyl orange #cấu trúc dị thể #tính chất quang học

Tài liệu tham khảo

Bai X, Wang L, Zon R, Lv Y, Sun Y, Zhu Y (2013) Performance enhancement of ZnO photocatalyst via a synergic effect of surface oxygen defect and grapheme hybridization. Langmuir 29:3097–3105 Chai B, Wang X, Cheng S, Zhou H, Zhang F (2014) One-pot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity. Ceram Int 40:429–435 Dias MG, Azevedo EB (2009) Photocatalytic decolorization of commercial acid dyes using solar irradiation. Water Air Soil Pollut 204:79–87 Dinesh VP, Biji P, Ashok A, Dhara SK, Kamruddin M, Tyagi AK, Raj B (2014) Plasmon-mediated, highly enhanced photocatalytic degradation of industrial textile dyes using hybrid ZnO@ Ag core–shell nanorods. RSC Adv 4:58930–58940 Divband B, Khatamian M, Eslamian GK, Darbandi M (2013) Synthesis of Ag/ZnO nanostructures by different methods and investigation of their photocatalytic efficiency for 4-nitrophenol degradation. Appl Surf Sci 284:80–86 Douy A (2001) Polyacrylamide gel: an efficient tool for easy synthesis of multicomponent oxide precursors of ceramics and glasses. Int J Inorg Mater 3:699–707 Fockedey E, Van Lierde A (2002) Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Res 36:4169–4175 Galindo C, Jacques P, Kalt A (2001) Photooxidation of the phenylazonaphthol AO20 on TiO2: kinetic and mechanistic investigations. Chemosphere 45:997–1005 Georgekutty R, Seery MK, Pillai SC (2008) A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism. J Phys Chem C 112:13563–13570 Gouvea CA, Wypych F, Moraes SG, Duran N, Nagata N, Peralta-Zamora P (2000) Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere 40:433–440 Gu C, Cheng C, Huang H, Wong T, Wang N, Zhang TY (2009) Growth and photocatalytic activity of dendrite-like ZnO@ Ag heterostructure nanocrystals. Cryst Growth Des 9:3278–3285 Guo XH, Ma JQ, Ge HG (2013) Preparation, characterization, and photocatalytic performance of pear-shaped ZnO/Ag core–shell submicrospheres. J Phys Chem Solids 74:784–788 Han A, Zhao M, Ye M, Liao J, Zhang Z, Li N (2013) Crystal structure and optical properties of YMnO3 compound with high near-infrared reflectance. Sol Energy 91:32–36 Hong Y, Tian C, Jiang B, Wu A, Zhang Q, Tian G, Fu H (2013) Facile synthesis of sheet-like ZnO assembly composed of small ZnO particles for highly efficient photocatalysis. J Mater Chem A 1:5700–5708 Jing L, Qu Y, Wang B, Li S, Jiang B, Yang L, Fu W, Fu H, Sun J (2006) Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol Energy Mater Sol Cells 90:1773–1787 Kajbafvala A, Ghorbani H, Paravar A, Samberg JP, Kajbafvala E, Sadrnezhaad SK (2012) Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct 51:512–522 Karunakaran C, Rajeswari V, Gomathisankar P (2011) Enhanced photocatalytic and antibacterial activities of sol–gel synthesized ZnO and Ag-ZnO. Mater Sci Semicond Process 14:133–138 Khodja AA, Sehili T, Pilichowski JF, Boule P (2001) Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J Photochem Photobiol A 141:231–239 Kositzi M, Antoniadis A, Poulios I, Kiridis I, Malato S (2004) Solar photocatalytic treatment of simulated dyestuff effluents. Sol Energy 77:591–600 Kozlov DV, Paukshtis EA, Savinov EN (2000) The comparative studies of titanium dioxide in gas-phase ethanol photocatalytic oxidation by the FTIR in situ method. Appl Catal B Environ 24:L7–L12 Li H, Wang D, Wang P (2009) Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse bi-doped TiO2 nanospheres. Chem A Eur J 15:12521–12527 Lin GJ, Yang H, Xian T, Wei ZQ, Jiang JL, Feng WJ (2012) Synthesis of TbMnO3 nanoparticles via a polyacrylamide gel route. Adv Powder Technol 23:35–39 Liu X, Yang G, Fu S (2007) Mass synthesis of nanocrystalline spinel ferrites by a polymer-pyrolysis route. Mater Sci Eng C 27:750–755 Lu W, Gao S, Wang J (2008a) One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance. J Phys Chem C 112:16792–16800 Lu W, Liu G, Gao S, Xing S, Wang J (2008b) Tyrosine-assisted preparation of Ag/ZnO nanocomposites with enhanced photocatalytic performance and synergistic antibacterial activities. Nanotechnology 19:445711 Ren C, Yang B, Wu M, Xu J, Fu Z, Guo T, Zhu C (2010) Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J Hazard Mater 182:123–129 Saravanan R, Karthikeyan N, Gupta VK, Thirumal E, Thangadurai P, Narayanan V, Stephen A (2013) ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater Sci Eng C 33:2235–2244 Sauer T, Cesconeto Neto G, Jose HJ (2002) Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. J Photochem Photobiol A 149:147–154 Sin JC, Lam SM, Satoshi I, Lee KT, Mohamed AR (2014) Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Appl Catal B Environ 148:258–268 Su W, Zhang Y, Li Z (2008) Multivalency iodine doped TiO2: preparation, characterization, theoretical studies, and visible-light photocatalysis. Langmuir 24:3422–3428 Sun F, Qiao X, Tan F, Wang W, Qiu X (2012a) One-step microwave synthesis of Ag/ZnO nanocomposites with enhanced photocatalytic performance. J Mater Sci 47:7262–7268 Sun F, Tan F, Wang W, Qiao X, Qiu X (2012b) Facile synthesis of Ag/ZnO heterostructure nanocrystals with enhanced photocatalytic performance. Mater Res Bull 47:3357–3361 Tünay O, Kabdasli I, Eremektar G, Orhon D (1996) Color removal from textile wastewaters. Water Sci Technol 34:9–16 Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA, Gnade BE (1996) Mechanisms behind green photoluminescence in ZnO phosphor powders. J Appl Phys 79:7983–7990 Wang T, Wang H, Xu P, Zhao X, Liu Y, Chao S (1998) The effect of properties of semiconductor oxide thin films on photocatalytic decomposition of dyeing waste water. Thin Solid Films 334:103–108 Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Dai Y (2012a) Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl Mat Interfaces 4:4024–4030 Wang S, Yu Y, Zuo Y, Li C, Yang J, Lu C (2012b) Synthesis and photocatalysis of hierarchical heteroassemblies of ZnO branched nanorod arrays on Ag core nanowires. Nanoscale 4:5895–5901 Wang SF, Xiang X, Ding QP, Gao XL, Liu CM, Li ZJ, Zu XT (2013a) Size-controlled synthesis and photoluminescence of porous monolithic α-alumina. Ceram Int 39:2943–2948 Wang SF, Xiang X, Sun G, Gao XL, Chen B, Ding QP, Zu XT (2013b) Role of pH, organic additive, and chelating agent in gel synthesis and fluorescent properties of porous monolithic alumina. J Phys Chem C 117:5067–5074 Wang Y, Liu L, Xu L, Meng C, Zhu W (2013c) Ag/TiO2 nanofiber heterostructures: highly enhanced photocatalysts under visible light. J Appl Phys 113:174311 Wang SF, Lv HB, Zhou XS, Fu YQ, Zu XT (2014) Magnetic nanocomposites through polyacrylamide gel route. Nanosci Nanotechnol Lett 6:758–771 Xian T, Yang H, Shen X, Jiang JL, Wei ZQ, Feng WJ (2009) Preparation of high-quality BiFeO3 nanopowders via a polyacrylamide gel route. J Alloys Compd 480:889–892 Xin B, Jing L, Ren Z, Wang B, Fu H (2005) Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J Phys Chem B 109:2805–2809 Xu J, Chang Y, Zhang Y, Ma S, Qu Y, Xu C (2008) Effect of silver ions on the structure of ZnO and photocatalytic performance of Ag/ZnO composites. Appl Surf Sci 255:1996–1999 Yang Z, Zhang P, Ding Y, Jiang Y, Long Z, Dai W (2011) Facile synthesis of Ag/ZnO heterostructures assisted by UV irradiation: highly photocatalytic property and enhanced photostability. Mater Res Bull 46:1625–1631 Yao BD, Chan YF, Wang N (2002) Formation of ZnO nanostructures by a simple way of thermal evaporation. Appl Phys Lett 81:757–759 Yin X, Que W, Fei D, Shen F, Guo Q (2012) Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties. J Alloys Compd 524:13–21 Zhang Y, Mu J (2007) One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites. J Colloid Interface Sci 309:478–484 Zhang M, Yang H, Xian T, Wei ZQ, Jiang JL, Feng YC, Liu XQ (2011) Polyacrylamide gel synthesis and photocatalytic performance of Bi2Fe4O9 nanoparticles. J Alloys Compd 509:809–812 Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014a) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci Rep 4:4596 Zhang Z, Liu H, Zhang H, Dong H, Liu X, Jia H, Xu B (2014b) Synthesis of spindle-like Ag/ZnO heterostructure composites with enhanced photocatalytic performance. Superlattices Microstruct 65:134–145 Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K (2007) Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem 46:6980–6986 Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J (2008) Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. J Phys Chem C 112:10773–10777 Zhu Y, Liu D, Lai Y, Meng M (2014) Ambient ultrasonic-assisted synthesis, stepwise growth mechanisms, and photocatalytic activity of flower-like nanostructured ZnO and Ag/ZnO. J Nanopart Res 16:1–13