Enhanced thermoelectric performance of chalcogenide Cu 2 CdSnSe 4 by ex-situ homogeneous nanoinclusions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Uher, 2001, Semiconductors and semimetals, 139
Caillat, 1996, Properties of single crystalline semiconducting CoSb3, J Appl Phys, 80, 4442, 10.1063/1.363405
Chen, 1997, Low-temperature transport properties of the filled skutterudites CeFe4−xCoxSb12, Phys Rev B, 55, 1476, 10.1103/PhysRevB.55.1476
Chen, 2001, Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12, J Appl Phys, 90, 1864, 10.1063/1.1388162
Li, 2009, High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase, Appl Phys Lett, 94, 102114, 10.1063/1.3099804
Zhao, 2016, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe, Science, 351, 141, 10.1126/science.aad3749
Morelli, 1995, Low temperature properties of the filled skutterudite CeFe4Sb12, J Appl Phys, 77, 3777, 10.1063/1.358552
Pei, 2011, Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66, 10.1038/nature09996
Zou, 2014, Enhanced thermoelectric performance of β-Zn4Sb3 based composites incorporated with large proportion of nanophase Cu3SbSe4, J Alloy Compd, 588, 568, 10.1016/j.jallcom.2013.11.049
Zhang, 2015, Thermoelectric materials: energy conversion between heat and electricity, J Materiomics, 1, 92, 10.1016/j.jmat.2015.01.001
Zhao, 2013, High thermoelectric performance via hierarchical compositionally alloyed nanostructures, J Am Chem Soc, 135, 7364, 10.1021/ja403134b
Liu, 2009, Improved thermoelectric properties of cu-doped quaternary chalcogenides of Cu2CdSnSe4, Adv Mater, 21, 3808, 10.1002/adma.200900409
Fan, 2011, Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit, J Am Chem Soc, 133, 15910, 10.1021/ja207159j
Chen, 2015, Colloidal synthesis of Cu2-xAgxCdSnSe4 nanocrystals: microstructures facilitate high performance thermoelectricity, J Mater Chem C, 3, 12273, 10.1039/C5TC02948A
Zhou, 2012, Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion, J Mater Chem, 22, 2958, 10.1039/C2JM15010G
Zhou, 2014, Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance, J Mater Chem A, 2, 20629, 10.1039/C4TA05285D
Cederkrantz, 2012, Enhanced thermoelectric properties of Mg2Si by addition of TiO2 nanoparticles, J Appl Phys, 111, 023701, 10.1063/1.3675512
Brochin, 2000, Preparation and transport properties of polycrystalline Bi and Bi-SiO2 nanocomposites, J Appl Phys, 88, 3269, 10.1063/1.1289079
Huang, 2004, The thermoelectric performance of ZrNiSn/ZrO2 composites, Solid State Commun, 130, 181, 10.1016/j.ssc.2004.02.001
Katsuyama, 2003, Effect of NiSb on the thermoelectric properties of skutterudite CoSb3, J Appl Phys, 93, 2758, 10.1063/1.1545158
Li, 2014, PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion, Appl Phys Lett, 104, 113905, 10.1063/1.4869220
Zou, 2014, Simultaneous enhancement in thermoelectric power factor and phonon blocking in hierarchical nanostructured β-Zn4Sb3-Cu3SbSe4, Appl Phys Lett, 104, 013904, 10.1063/1.4861156
Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Adv Mater, 19, 1043, 10.1002/adma.200600527
Bux, 2010, Nanostructured materials for thermoelectric applications, Chem Commun, 46, 8311, 10.1039/c0cc02627a
Vineis, 2010, Nanostructured thermoelectrics: big efficiency gains from small features, Adv Mater, 22, 3970, 10.1002/adma.201000839
Yu, 2010, Thermoelectric property studies on thallium-doped lead telluride prepared by ball milling and hot pressing, J Appl Phys, 108, 016104, 10.1063/1.3452323
Volobujeva, 2009, Cu2ZnSnSe4 films by selenization of Sn–Zn–Cu sequential films, J Phys Chem Solids, 70, 567, 10.1016/j.jpcs.2008.12.010
Altosaar, 2008, Cu2Zn1-xCdxSn(Se1-ySy)4solid solutions as absorber materials for solar cells, Phys Stat Sol (a), 205, 167, 10.1002/pssa.200776839
Yang, 2008, Size-dependent Raman red shifts of semiconductor nanocrystals, J Phys Chem B, 112, 14193, 10.1021/jp804621v
Zeiri, 2007, Raman spectroscopy of ultranarrow CdS nanostructures, J Phys Chem C, 111, 11843, 10.1021/jp072015q
Kanatzidis, 2009, Nanostructured thermoelectrics: the new paradigm?, Chem Mater, 22, 648, 10.1021/cm902195j
Lan, 2010, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach, Adv Funct Mater, 20, 357, 10.1002/adfm.200901512
Xie, 2010, Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites, Nano Lett, 10, 3283, 10.1021/nl100804a
Vaqueiro, 2010, Recent developments in nanostructured materials for high-performance thermoelectrics, J Mater Chem, 20, 9577, 10.1039/c0jm01193b
Minnich, 2009, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ Sci, 2, 466, 10.1039/b822664b
Zhao, 2014, The panoscopic approach to high performance thermoelectrics, Energy Environ Sci, 7, 251, 10.1039/C3EE43099E
Zhang, 2014, High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds, Adv Mater, 26, 3848, 10.1002/adma.201400058