Enhanced thermoelectric performance of chalcogenide Cu 2 CdSnSe 4 by ex-situ homogeneous nanoinclusions

Journal of Materiomics - Tập 2 Số 2 - Trang 179-186 - 2016
Qiufan Chen1, Yanci Yan1, Heng Zhan1, Wei Yao1, Yan Chen2, Jiyan Dai2, Frédéric Cherioux1, Xiaoyuan Zhou1
1Department of Applied Physics, Chongqing University, Chongqing 400044, China
2Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Uher, 2001, Semiconductors and semimetals, 139

Caillat, 1996, Properties of single crystalline semiconducting CoSb3, J Appl Phys, 80, 4442, 10.1063/1.363405

Chen, 1997, Low-temperature transport properties of the filled skutterudites CeFe4−xCoxSb12, Phys Rev B, 55, 1476, 10.1103/PhysRevB.55.1476

Chen, 2001, Anomalous barium filling fraction and n-type thermoelectric performance of BayCo4Sb12, J Appl Phys, 90, 1864, 10.1063/1.1388162

Li, 2009, High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase, Appl Phys Lett, 94, 102114, 10.1063/1.3099804

Zhao, 2016, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe, Science, 351, 141, 10.1126/science.aad3749

Morelli, 1995, Low temperature properties of the filled skutterudite CeFe4Sb12, J Appl Phys, 77, 3777, 10.1063/1.358552

Pei, 2011, Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66, 10.1038/nature09996

Zou, 2014, Enhanced thermoelectric performance of β-Zn4Sb3 based composites incorporated with large proportion of nanophase Cu3SbSe4, J Alloy Compd, 588, 568, 10.1016/j.jallcom.2013.11.049

Zhang, 2015, Thermoelectric materials: energy conversion between heat and electricity, J Materiomics, 1, 92, 10.1016/j.jmat.2015.01.001

Zhao, 2013, High thermoelectric performance via hierarchical compositionally alloyed nanostructures, J Am Chem Soc, 135, 7364, 10.1021/ja403134b

Liu, 2009, Improved thermoelectric properties of cu-doped quaternary chalcogenides of Cu2CdSnSe4, Adv Mater, 21, 3808, 10.1002/adma.200900409

Fan, 2011, Colloidal synthesis of Cu2CdSnSe4 nanocrystals and hot-pressing to enhance the thermoelectric figure-of-merit, J Am Chem Soc, 133, 15910, 10.1021/ja207159j

Chen, 2015, Colloidal synthesis of Cu2-xAgxCdSnSe4 nanocrystals: microstructures facilitate high performance thermoelectricity, J Mater Chem C, 3, 12273, 10.1039/C5TC02948A

Zhou, 2012, Enhanced thermoelectric properties of Ba-filled skutterudites by grain size reduction and Ag nanoparticle inclusion, J Mater Chem, 22, 2958, 10.1039/C2JM15010G

Zhou, 2014, Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance, J Mater Chem A, 2, 20629, 10.1039/C4TA05285D

Cederkrantz, 2012, Enhanced thermoelectric properties of Mg2Si by addition of TiO2 nanoparticles, J Appl Phys, 111, 023701, 10.1063/1.3675512

Brochin, 2000, Preparation and transport properties of polycrystalline Bi and Bi-SiO2 nanocomposites, J Appl Phys, 88, 3269, 10.1063/1.1289079

Huang, 2004, The thermoelectric performance of ZrNiSn/ZrO2 composites, Solid State Commun, 130, 181, 10.1016/j.ssc.2004.02.001

Katsuyama, 2003, Effect of NiSb on the thermoelectric properties of skutterudite CoSb3, J Appl Phys, 93, 2758, 10.1063/1.1545158

Li, 2014, PbTe-based thermoelectric nanocomposites with reduced thermal conductivity by SiC nanodispersion, Appl Phys Lett, 104, 113905, 10.1063/1.4869220

Zou, 2014, Simultaneous enhancement in thermoelectric power factor and phonon blocking in hierarchical nanostructured β-Zn4Sb3-Cu3SbSe4, Appl Phys Lett, 104, 013904, 10.1063/1.4861156

Snyder, 2008, Complex thermoelectric materials, Nat Mater, 7, 105, 10.1038/nmat2090

Dresselhaus, 2007, New directions for low-dimensional thermoelectric materials, Adv Mater, 19, 1043, 10.1002/adma.200600527

Bux, 2010, Nanostructured materials for thermoelectric applications, Chem Commun, 46, 8311, 10.1039/c0cc02627a

Vineis, 2010, Nanostructured thermoelectrics: big efficiency gains from small features, Adv Mater, 22, 3970, 10.1002/adma.201000839

Yu, 2010, Thermoelectric property studies on thallium-doped lead telluride prepared by ball milling and hot pressing, J Appl Phys, 108, 016104, 10.1063/1.3452323

Volobujeva, 2009, Cu2ZnSnSe4 films by selenization of Sn–Zn–Cu sequential films, J Phys Chem Solids, 70, 567, 10.1016/j.jpcs.2008.12.010

Altosaar, 2008, Cu2Zn1-xCdxSn(Se1-ySy)4solid solutions as absorber materials for solar cells, Phys Stat Sol (a), 205, 167, 10.1002/pssa.200776839

Yang, 2008, Size-dependent Raman red shifts of semiconductor nanocrystals, J Phys Chem B, 112, 14193, 10.1021/jp804621v

Zeiri, 2007, Raman spectroscopy of ultranarrow CdS nanostructures, J Phys Chem C, 111, 11843, 10.1021/jp072015q

Kanatzidis, 2009, Nanostructured thermoelectrics: the new paradigm?, Chem Mater, 22, 648, 10.1021/cm902195j

Lan, 2010, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach, Adv Funct Mater, 20, 357, 10.1002/adfm.200901512

Xie, 2010, Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites, Nano Lett, 10, 3283, 10.1021/nl100804a

Vaqueiro, 2010, Recent developments in nanostructured materials for high-performance thermoelectrics, J Mater Chem, 20, 9577, 10.1039/c0jm01193b

Minnich, 2009, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy Environ Sci, 2, 466, 10.1039/b822664b

Zhao, 2014, The panoscopic approach to high performance thermoelectrics, Energy Environ Sci, 7, 251, 10.1039/C3EE43099E

Zhang, 2014, High-performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds, Adv Mater, 26, 3848, 10.1002/adma.201400058

Dahal, 2014, Thermoelectric performance of Ni compensated cerium and neodymium double filled p-type skutterudites, Phys Chem Chem Phys, 16, 18170, 10.1039/C4CP00383G