Enhanced thermal conductivity of TiO2—water based nanofluids
Tóm tắt
Từ khóa
Tài liệu tham khảo
Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, vol. 66, 99
S. Zussman, More about Argonne's stable, highly conductive nanofluids, Technology Transfer at Argonne, Public communication, Argonne National Laboratory, IL, USA, 2002
Eastman, 2004, Thermal transport in nanofluids, Annual Rev. Mater. Res., 34, 219, 10.1146/annurev.matsci.34.052803.090621
Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080
Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420
Eastman, 1997, Enhanced thermal conductivity through the development of nanofluids, vol. 457, 3
Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218
Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280, 10.1115/1.2825978
Wang, 1999, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486
Xuan, 2000, Heat transfer enhancement of nanofluids, Internat. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3
Sakamoto, 2002, Origin of long-range attractive force between surfaces hydrophobized by surfactant adsorption, Langmuir, 18, 5713, 10.1021/la025701j
Xie, 2002, Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Appl. Phys., 91, 4568, 10.1063/1.1454184
Haarman, 1971, A contribution to the theory of the transient hot-wire method, Physica, 52, 605, 10.1016/0031-8914(71)90165-0
Healy, 1976, The theory of the transient hot-wire method for measuring thermal conductivity, Physica C, 82, 392, 10.1016/0378-4363(76)90203-5
Nagasaka, 1981, Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method, J. Phys. E: Sci. Instrum., 14, 1435, 10.1088/0022-3735/14/12/020
Bentley, 1984, Temperature sensor characteristics and measurement system design, J. Phys. E: Sci. Instrum., 17, 430, 10.1088/0022-3735/17/6/002
Wang, 2002, Thermal conductivity of nanoparticle suspensions, 1
Maxwell, 1891
Hamilton, 1962, Thermal conductivity of heterogeneous two component systems, I & EC Fundamentals, 1, 187, 10.1021/i160003a005
Xuan, 2000, Conceptions for heat transfer correlation of nanofluid, Internat. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5
B.-X. Wang, H. Li, X.F. Peng, Research on the heat-conduction enhancement for liquid with nano-particle suspensions, General Paper (G-1), International Symposium on Thermal Science and Engineering (TSE2002), Beijing, 2002
Ding, 2004, Nanofluids for heat transfer intensification—where are we and where should we go?, 66
Wang, 2003, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Internat. J. Heat Mass Transfer, 46, 2665, 10.1016/S0017-9310(03)00016-4
S.U.S. Choi, X. Xu, P. Keblinski, W. Yu, Nanofluids can take the heat, in: DOE BES 20th Symposium on Energy Engineering Sciences, Argonne, USA, 2002