Enhanced thermal conductivity and microwave dielectric properties by mesostructural design of multiphase nanocomposite

Nano Materials Science - Tập 4 - Trang 133-138 - 2022
Liping Zhou1, Peng Xu1, Faxiang Qin1
1Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, PR China

Tài liệu tham khảo

Zhang, 2020, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms, Mater. Sci. Eng. R Rep., 142, 100580, 10.1016/j.mser.2020.100580 Yan, 2012, Efficacy and safety of low-dose peginterferon alpha-2a plus ribavirin on chronic hepatitis C, Gastroenterol Res Pract, 2012, 302093, 10.1155/2012/302093 Cui, 2011, Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes, Carbon, 49, 495, 10.1016/j.carbon.2010.09.047 Chung, 2001, Materials for thermal conduction, Appl. Therm. Eng., 21, 1593, 10.1016/S1359-4311(01)00042-4 Burger, 2016, Review of thermal conductivity in composites: mechanisms, parameters and theory, Prog. Polym. Sci., 61, 1, 10.1016/j.progpolymsci.2016.05.001 Zhu, 2017, Thermal conductivity and dielectric properties of immiscible LDPE/epoxy blend filled with hybrid filler consisting of HGM and nitride particle, J. Alloys Compd., 701, 499, 10.1016/j.jallcom.2017.01.182 Anderson, 1966, Thermal conductivity of polymers, Chem. Rev., 66, 677, 10.1021/cr60244a004 Han, 2011, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review, Prog. Polym. Sci., 36, 914, 10.1016/j.progpolymsci.2010.11.004 Chen, 2016, Thermal conductivity of polymer-based composites: fundamentals and applications, Prog. Polym. Sci., 59, 41, 10.1016/j.progpolymsci.2016.03.001 Goli, 2014, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources, 248, 37, 10.1016/j.jpowsour.2013.08.135 Wang, 2018, Enhanced thermoelectric performance of conjugated polymer/single-walled carbon nanotube composites with strong stacking, ACS Appl. Energy Mater., 1, 5075, 10.1021/acsaem.8b01126 K. Kuang, F. Kim, S.S. Cahill, RF and Microwave Microelectronics Packaging, Springer US2010. Vo, 2002, Towards model-based engineering of optoelectronic packaging materials: dielectric constant modeling, Microelectron. J., 33, 409, 10.1016/S0026-2692(02)00010-1 Yan, 2012, Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding, ACS Appl. Mater. Interfaces, 4, 4740, 10.1021/am301119b Xu, 2011, Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(epsilon-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes, ACS Appl. Mater. Interfaces, 3, 4858, 10.1021/am201355j Droval, 2008, Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching, Smart Mater. Struct., 17, 10.1088/0964-1726/17/2/025011 Guo, 2020, Factors affecting thermal conductivities of the polymers and polymer composites: a review, Compos. Sci. Technol., 193, 108134, 10.1016/j.compscitech.2020.108134 Xiao, 2018, Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites, Compos. Appl. Sci. Manuf., 110, 133, 10.1016/j.compositesa.2018.03.030 Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064 Yu, 2005, Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett., 5, 1842, 10.1021/nl051044e Salzano de Luna, 2016, Effects of nanoparticles on the morphology of immiscible polymer blends – challenges and opportunities, Eur. Polym. J., 79, 198, 10.1016/j.eurpolymj.2016.02.023 Al-Saleh, 2008, An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends, Compos Part a-Appl S, 39, 284, 10.1016/j.compositesa.2007.10.010 Zhou, 2021, Effect of the selective localization of carbon nanotubes and phase domain in immiscible blends on tunable microwave dielectric properties, Compos. Sci. Technol., 213, 108919, 10.1016/j.compscitech.2021.108919 Göldel, 2011, Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing, Macromolecules, 44, 6094, 10.1021/ma200793a Hong, 2008, Shear-induced migration of nanoclay during morphology evolution of PBT/PS blend, J. Appl. Polym. Sci., 108, 565, 10.1002/app.27330 Cao, 2013, High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers, Compos. Sci. Technol., 89, 142, 10.1016/j.compscitech.2013.09.024