Enhanced thermal conductivity and microwave dielectric properties by mesostructural design of multiphase nanocomposite
Tài liệu tham khảo
Zhang, 2020, Three-dimensional interconnected networks for thermally conductive polymer composites: design, preparation, properties, and mechanisms, Mater. Sci. Eng. R Rep., 142, 100580, 10.1016/j.mser.2020.100580
Yan, 2012, Efficacy and safety of low-dose peginterferon alpha-2a plus ribavirin on chronic hepatitis C, Gastroenterol Res Pract, 2012, 302093, 10.1155/2012/302093
Cui, 2011, Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes, Carbon, 49, 495, 10.1016/j.carbon.2010.09.047
Chung, 2001, Materials for thermal conduction, Appl. Therm. Eng., 21, 1593, 10.1016/S1359-4311(01)00042-4
Burger, 2016, Review of thermal conductivity in composites: mechanisms, parameters and theory, Prog. Polym. Sci., 61, 1, 10.1016/j.progpolymsci.2016.05.001
Zhu, 2017, Thermal conductivity and dielectric properties of immiscible LDPE/epoxy blend filled with hybrid filler consisting of HGM and nitride particle, J. Alloys Compd., 701, 499, 10.1016/j.jallcom.2017.01.182
Anderson, 1966, Thermal conductivity of polymers, Chem. Rev., 66, 677, 10.1021/cr60244a004
Han, 2011, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review, Prog. Polym. Sci., 36, 914, 10.1016/j.progpolymsci.2010.11.004
Chen, 2016, Thermal conductivity of polymer-based composites: fundamentals and applications, Prog. Polym. Sci., 59, 41, 10.1016/j.progpolymsci.2016.03.001
Goli, 2014, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources, 248, 37, 10.1016/j.jpowsour.2013.08.135
Wang, 2018, Enhanced thermoelectric performance of conjugated polymer/single-walled carbon nanotube composites with strong stacking, ACS Appl. Energy Mater., 1, 5075, 10.1021/acsaem.8b01126
K. Kuang, F. Kim, S.S. Cahill, RF and Microwave Microelectronics Packaging, Springer US2010.
Vo, 2002, Towards model-based engineering of optoelectronic packaging materials: dielectric constant modeling, Microelectron. J., 33, 409, 10.1016/S0026-2692(02)00010-1
Yan, 2012, Improved electrical conductivity of polyamide 12/graphene nanocomposites with maleated polyethylene-octene rubber prepared by melt compounding, ACS Appl. Mater. Interfaces, 4, 4740, 10.1021/am301119b
Xu, 2011, Enhancement of electrical conductivity by changing phase morphology for composites consisting of polylactide and poly(epsilon-caprolactone) filled with acid-oxidized multiwalled carbon nanotubes, ACS Appl. Mater. Interfaces, 3, 4858, 10.1021/am201355j
Droval, 2008, Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching, Smart Mater. Struct., 17, 10.1088/0964-1726/17/2/025011
Guo, 2020, Factors affecting thermal conductivities of the polymers and polymer composites: a review, Compos. Sci. Technol., 193, 108134, 10.1016/j.compscitech.2020.108134
Xiao, 2018, Improved thermal properties by controlling selective distribution of AlN and MWCNT in immiscible polycarbonate (PC)/Polyamide 66 (PA66) composites, Compos. Appl. Sci. Manuf., 110, 133, 10.1016/j.compositesa.2018.03.030
Balandin, 2011, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater., 10, 569, 10.1038/nmat3064
Yu, 2005, Thermal conductance and thermopower of an individual single-wall carbon nanotube, Nano Lett., 5, 1842, 10.1021/nl051044e
Salzano de Luna, 2016, Effects of nanoparticles on the morphology of immiscible polymer blends – challenges and opportunities, Eur. Polym. J., 79, 198, 10.1016/j.eurpolymj.2016.02.023
Al-Saleh, 2008, An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends, Compos Part a-Appl S, 39, 284, 10.1016/j.compositesa.2007.10.010
Zhou, 2021, Effect of the selective localization of carbon nanotubes and phase domain in immiscible blends on tunable microwave dielectric properties, Compos. Sci. Technol., 213, 108919, 10.1016/j.compscitech.2021.108919
Göldel, 2011, Shape-dependent localization of carbon nanotubes and carbon black in an immiscible polymer blend during melt mixing, Macromolecules, 44, 6094, 10.1021/ma200793a
Hong, 2008, Shear-induced migration of nanoclay during morphology evolution of PBT/PS blend, J. Appl. Polym. Sci., 108, 565, 10.1002/app.27330
Cao, 2013, High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers, Compos. Sci. Technol., 89, 142, 10.1016/j.compscitech.2013.09.024