Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles

Journal of Contaminant Hydrology - Tập 118 - Trang 117-127 - 2010
Nataphan Sakulchaicharoen1, Denis M. O'Carroll1, Jose E. Herrera2
1Department of Civil and Environmental Engineering, University of Western Ontario, 1151 Richmond St. London, ON, Canada N6A 5B9
2Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON, Canada N6A 5B9

Tài liệu tham khảo

Böhme, 2007, Hydrodynamic size and electrophoretic mobility of poly(styrene sulfonate) versus molecular weight, Macromol. Chem. Phys., 208, 2254, 10.1002/macp.200700386 Cosgrove, 2005 He, 2005, Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol., 39, 3314, 10.1021/es048743y He, 2007, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers, Environ. Sci. Technol., 41, 6216, 10.1021/es0705543 He, 2008, Hydrodechlorination of trichloroethene using stabilized Fe–Pd nanoparticles: reaction mechanism and effects of stabilizers, catalysts and reaction conditions, Appl. Catal. B., 84, 533, 10.1016/j.apcatb.2008.05.008 He, 2007, Stabilization of Feâˆ′Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater, Ind. Eng. Chem. Res., 46, 29, 10.1021/ie0610896 Hong Ting, 2006, Effects of polyvinylpyrrolidone and carbon nanotubes on magnetorheological properties of iron-based magnetorheological fluids, J. Appl. Polym. Sci., 102, 1653, 10.1002/app.24049 Kanel, 2008, Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media, Environ. Sci. Technol., 42, 896, 10.1021/es071774j Kim, 2009, Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers, Environ. Sci. Technol., 43, 3824, 10.1021/es802978s King, 2005, Encyclopedia of Inorganic Chemistry, 4154 Li, 2006, Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects, Crit. Rev. Solid State Mater. Sci., 31, 111, 10.1080/10408430601057611 Lien, 1999, Transformation of chlorinated methanes by nanoscale iron particles, J. Environ. Eng., 125, 1042, 10.1061/(ASCE)0733-9372(1999)125:11(1042) Lien, 2001, Nanoscale iron particles for complete reduction of chlorinated ethenes, Colloids Surf. A, 191, 97, 10.1016/S0927-7757(01)00767-1 Liu, 2005, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol., 39, 1338, 10.1021/es049195r Liu, 2007, Effect of TCE concentration and dissolved groundwater solutes on nzvi-promoted tce dechlorination and H2 evolution, Environ. Sci. Technol., 41, 7881, 10.1021/es0711967 Matheson, 1994, Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol., 28, 2045, 10.1021/es00061a012 Orth, 1996, Dechlorination of trichloroethene in aqueous solution using Fe0, Environ. Sci. Technol., 30, 66, 10.1021/es950053u Peter, 2007, Gelling agents, 73 Phenrat, 2007, Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environ. Sci. Technol., 41, 284, 10.1021/es061349a Phenrat, 2008, Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation, J. Nanopart. Res., 10, 795, 10.1007/s11051-007-9315-6 Phenrat, 2009, Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms, Environ. Sci. Technol., 43, 1507, 10.1021/es802187d Robert, 1994, Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground Water, 32, 958, 10.1111/j.1745-6584.1994.tb00935.x Saleh, 2007, Surface modifications enhance nanoiron transport and napl targeting in saturated porous media, Environ. Eng. Sci., 24, 45, 10.1089/ees.2007.24.45 Saleh, 2008, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns, Environ. Sci. Technol., 42, 3349, 10.1021/es071936b Schrick, 2004, Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater, Chem. Mater., 16, 2187, 10.1021/cm0218108 Teranishi, 1998, Size control of palladium nanoparticles and their crystal structures, Chem. Mater., 10, 594, 10.1021/cm9705808 Tiraferri, 2009, Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum, J. Nanopart. Res., 11, 635, 10.1007/s11051-008-9405-0 Tiraferri, 2008, Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum, J. Colloid Interface Sci., 324, 71, 10.1016/j.jcis.2008.04.064 Wang, 1997, Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31, 2154, 10.1021/es970039c Zhang, 2006, Applications of iron nanoparticles for groundwater remediation, Remediation J., 16, 7, 10.1002/rem.20078