Enhanced specific heat capacity of high-temperature molten salt-based nanofluids
Tóm tắt
Từ khóa
Tài liệu tham khảo
G. Janz, C. Allen, N. Bansal, R. Murphy, R. Tomkins, Physical properties data compilations relevant to energy storage, US Dept. of Commerce, National Bureau of Standards, Washington, DC, 1979.
Araki, 2005, Measurement of thermophysical properties of molten salts: mixtures of alkaline carbonate salts, Int. J. Thermophys., 9, 1071, 10.1007/BF01133274
Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, 99
Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3
Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer, 121, 280, 10.1115/1.2825978
Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME Trans. J. Heat Transfer, 125, 567, 10.1115/1.1571080
Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218
Wang, 1999, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486
Keblinksi, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45, 855, 10.1016/S0017-9310(01)00175-2
Keblinski, 2005, Comment on model for heat conduction in nano fluids, Phys. Rev. Lett., 95, 209401, 10.1103/PhysRevLett.95.209401
Evans, 2006, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. Phys. Lett., 88, 093116, 10.1063/1.2179118
Evans, 2008, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transfer, 51, 1431, 10.1016/j.ijheatmasstransfer.2007.10.017
Wang, 2003, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transfer, 46, 2665, 10.1016/S0017-9310(03)00016-4
Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5, 167, 10.1023/A:1024438603801
Xue, 2004, Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer, 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016
Domingues, 2005, Heat transfer between two nanoparticles through near field interaction, Phys. Rev. Lett., 94, 085901, 10.1103/PhysRevLett.94.085901
Nie, 2008, Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids, Int. J. Heat Mass Transfer, 51, 1342, 10.1016/j.ijheatmasstransfer.2007.11.034
Ben-Abdallah, 2006, Heat transfer through near-field interactions in nanofluids, Appl. Phys. Lett., 89, 113, 10.1063/1.2349857
Nelson, 2009, Flow loop experiments using polyalphaolefin, J. Thermophys. Heat Transfer, 23, 752, 10.2514/1.31033
Shin, 2011, Enhanced specific heat of SiO2 nanofluid, ASME J. Heat Transfer, 133, 024501, 10.1115/1.4002600
Shin, 2011, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, Int. J. Heat Mass Transfer, 54, 1064, 10.1016/j.ijheatmasstransfer.2010.11.017
Bridges, 2011, Potential of nanoparticle enhanced ionic liquids (NEILs) as advanced heat-transfer fluids, Energy Fuels, 25, 4862, 10.1021/ef2012084
Wang, 2006, Surface and size effects on the specific heat capacity of nanoparticles, Int. J. Thermophys., 27, 139, 10.1007/s10765-006-0022-9
Wang, 2004, Enhancement of molar heat capacity of nanostructured Al2O3, J. Nanopart. Res., 3, 483, 10.1023/A:1012514216429
Li, 2010, Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids, J. Nanopart. Res., 12, 811, 10.1007/s11051-009-9728-5