Enhanced specific heat capacity of high-temperature molten salt-based nanofluids

International Journal of Heat and Mass Transfer - Tập 57 Số 2 - Trang 542-548 - 2013
Hani Tiznobaik1, Donghyun Shin1
1Department of Mechanical & Aerospace Engineering, The University of Texas at Arlington, Arlington, TX 76019-0023, United States

Tóm tắt

Từ khóa


Tài liệu tham khảo

Palgrave, 2008, Innovation in CSP, Renew. Energy Focus, 9, 44, 10.1016/S1755-0084(08)70066-8

G. Janz, C. Allen, N. Bansal, R. Murphy, R. Tomkins, Physical properties data compilations relevant to energy storage, US Dept. of Commerce, National Bureau of Standards, Washington, DC, 1979.

Araki, 2005, Measurement of thermophysical properties of molten salts: mixtures of alkaline carbonate salts, Int. J. Thermophys., 9, 1071, 10.1007/BF01133274

Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, 99

Xuan, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3

Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer, 121, 280, 10.1115/1.2825978

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME Trans. J. Heat Transfer, 125, 567, 10.1115/1.1571080

Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218

Wang, 1999, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486

Keblinksi, 2002, Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids), Int. J. Heat Mass Transfer, 45, 855, 10.1016/S0017-9310(01)00175-2

Keblinski, 2005, Comment on model for heat conduction in nano fluids, Phys. Rev. Lett., 95, 209401, 10.1103/PhysRevLett.95.209401

Evans, 2006, Role of Brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. Phys. Lett., 88, 093116, 10.1063/1.2179118

Evans, 2008, Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transfer, 51, 1431, 10.1016/j.ijheatmasstransfer.2007.10.017

Wang, 2003, A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles, Int. J. Heat Mass Transfer, 46, 2665, 10.1016/S0017-9310(03)00016-4

Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5, 167, 10.1023/A:1024438603801

Xue, 2004, Effect of liquid layering at the liquid–solid interface on thermal transport, Int. J. Heat Mass Transfer, 47, 4277, 10.1016/j.ijheatmasstransfer.2004.05.016

Domingues, 2005, Heat transfer between two nanoparticles through near field interaction, Phys. Rev. Lett., 94, 085901, 10.1103/PhysRevLett.94.085901

Nie, 2008, Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids, Int. J. Heat Mass Transfer, 51, 1342, 10.1016/j.ijheatmasstransfer.2007.11.034

Ben-Abdallah, 2006, Heat transfer through near-field interactions in nanofluids, Appl. Phys. Lett., 89, 113, 10.1063/1.2349857

Nelson, 2009, Flow loop experiments using polyalphaolefin, J. Thermophys. Heat Transfer, 23, 752, 10.2514/1.31033

Shin, 2011, Enhanced specific heat of SiO2 nanofluid, ASME J. Heat Transfer, 133, 024501, 10.1115/1.4002600

Shin, 2011, Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications, Int. J. Heat Mass Transfer, 54, 1064, 10.1016/j.ijheatmasstransfer.2010.11.017

Bridges, 2011, Potential of nanoparticle enhanced ionic liquids (NEILs) as advanced heat-transfer fluids, Energy Fuels, 25, 4862, 10.1021/ef2012084

Wang, 2006, Surface and size effects on the specific heat capacity of nanoparticles, Int. J. Thermophys., 27, 139, 10.1007/s10765-006-0022-9

Wang, 2004, Enhancement of molar heat capacity of nanostructured Al2O3, J. Nanopart. Res., 3, 483, 10.1023/A:1012514216429

Li, 2010, Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids, J. Nanopart. Res., 12, 811, 10.1007/s11051-009-9728-5

Oh, 2005, Ordered liquid aluminum at the interface with sapphire, Science, 310, 661, 10.1126/science.1118611