Enhanced specialization and microlocalization
Tóm tắt
Enhanced ind-sheaves provide a suitable framework for the irregular Riemann–Hilbert correspondence. In this paper, we show how Sato’s specialization and microlocalization functors have a natural enhancement, and discuss some of their properties.
Tài liệu tham khảo
D’Agnolo, A.: On the Laplace transform for tempered holomorphic functions. Int. Math. Res. Not. 2014(16), 4587–4623 (2014)
D’Agnolo, A., Hien, M., Morando, G., Sabbah, C.: Topological computations of some Stokes phenomena. Ann. Inst. Fourier 70(2), 739–808 (2020)
D’Agnolo, A., Kashiwara, M.: Riemann-Hilbert correspondence for holonomic D-modules. Publ. Math. Inst. Hautes Études Sci. 123(1), 69–197 (2016)
D’Agnolo, A., Kashiwara, M.: Enhanced perversities. J. Reine Angew. Math. (Crelle’s Journal) 751, 185–241 (2019)
Guillermou, S., Schapira, P.: Microlocal theory of sheaves and Tamarkin’s non displaceability theorem. In: Homological Mirror Symmetry and Tropical Geometry, Lecture Notes of the Unione Matematica Italiana 15, Springer, Berlin, 43–85 (2014)
Kashiwara, M.: Riemann-Hilbert correspondence for irregular holonomic \({\cal{D}}\)-modules. Jpn. J. Math. 11(1), 113–149 (2016)
Kashiwara, M., Schapira, P.: Sheaves on manifolds, Grundlehren der Mathematischen Wissenschaften 292, Springer, Berlin, x+512 pp (1990)
Kashiwara, M., Schapira, P.: Ind-sheaves, Astérisque 271, 136 pp (2001)
Kashiwara, M., Schapira, P.: Irregular holonomic kernels and Laplace transform. Selecta Math. 22(1), 55–109 (2016)
Kashiwara, M., Schapira, P.: Regular and irregular holonomic D-modules, London Mathematical Society Lecture Note Series 433, Cambridge University Press, Cambridge, vi+111 pp (2016)
Kashiwara, M., Schapira, P., Ivorra, F., Waschkies, I.: Microlocalization of ind-sheaves. In: Studies in Lie theory, 171–221, Progr. Math. 243, Birkhäuser (2006)
Tamarkin, D.: Microlocal condition for non-displaceability. In: Algebraic and Analytic Microlocal Analysis, Springer Proc. in Math. & Stat. 269, 99–223 (2018)