Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure

Nature Photonics - Tập 6 Số 9 - Trang 591-595 - 2012
Zhicai He1, Chengmei Zhong1, Shi‐Jian Su1, Miao Xu1, Hongbin Wu1, Yong Cao1
1Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, PR China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 3, 297–303 (2009).

Chen, H-Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649–653 (2009).

Liang, Y. Y. et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).

Seo, J.-H. et al. Improved high-efficiency organic solar cells via incorporation of a conjugated polyelectrolyte interlayer. J. Am. Chem. Soc. 133, 8416–8419 (2011).

He, Z. C. et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density and fill factor in polymer solar cell. Adv. Mater. 23, 4636–4643 (2011).

Brabec, C. J. et al. Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 22, 3839–3856 (2010).

Li, G., Chu, C. W., Shrotriya, V., Huang, J. & Yang, Y. Efficient inverted polymer solar cells. Appl. Phys. Lett. 88, 253503 (2006).

Waldauf, C. et al. Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact. Appl. Phys. Lett. 89, 233517 (2006).

Huang, J., Li, G. & Yang, Y. A semi-transparent plastic solar cell fabricated by a lamination process. Adv. Mater. 20, 415–419 (2008).

Ameri, T. et al. Fabrication, optical modeling, and color characterization of semitransparent bulk-heterojunction organic solar cells in an inverted structure. Adv. Funct. Mater. 20, 1592–1598 (2010).

Yang, T. B. et al. Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J. Phys. Chem. C 114, 6849–6853 (2010).

Sun, Y. M., Seo, J. H., Takacs, C. J., Seifter, J. & Heeger, A. J. Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679–1683 (2011).

Small, C. E. et al. High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nature Photon. 6, 115–120 (2012).

Na, S-I., Kim, T. S., Oh, S-H., Kim, J-Y., Kim, S-S. & Kim, D-Y. Enhanced performance of inverted polymer solar cells with cathode interfacial tuning via water-soluble polyfluorenes. Appl. Phys. Lett. 97, 223305 (2010).

Choi, H. S. et al. Combination of titanium oxide and a conjugated polyelectrolyte for high-performance inverted-type organic optoelectronic devices. Adv. Mater. 23, 2759–2763 (2011).

Zhu, Y. X., Xu, X. F., Zhang, L. J., Chen, J. W. & Cao, Y. High efficiency inverted polymeric bulk-heterojunction solar cells with hydrophilic conjugated polymers as cathode interlayer on ITO. Sol. Ener. Mater. Sol. Cells 97, 83–88 (2012).

Cheng, Y.-J., Hsieh, C.-H., He, Y. J., Hsu, C.-S. & Li, Y. F. Combination of indene–C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J. Am. Chem. Soc. 132, 17381–17383 (2010).

Hsieh, C.-H. et al. Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer. J. Am. Chem. Soc. 132, 4887–4893 (2010).

Park, J. S. et al. Efficient hybrid organic-inorganic light emitting diodes with self-assembled dipole molecule deposited metal oxides. Appl. Phys. Lett. 96, 243306 (2010).

Xu, Z. et al. Vertical phase separation in poly(3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells. Adv. Funct. Mater. 19, 1227–1234 (2009).

Campoy-Quiles, M. et al. Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. Nature Mater. 7, 158–164 (2008).

Huang, F., Wu, H. B., Wang, D. L., Yang, W. & Cao, Y. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater. 16, 708–716 (2004).

Wu, H. B. et al. Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers. Adv. Mater. 16, 1826–1830 (2004).

Huang, F., Wu, H. B. & Cao, Y. Water/alcohol soluble conjugated polymers as highly efficient electron injection/transporting layer in optoelectronic devices. Chem. Soc. Rev. 39, 2500–2521 (2010).

Wu, H. B., Huang, F., Peng, J. B. & Cao, Y. High-efficiency electron injection cathode of Au for polymer light-emitting devices. Org. Elect. 6, 118–128 (2005).

Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 605–625 (1999).

Braun, S., Salaneck, W. R. & Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21, 1450–1472 (2009).

Greiner, M. T. et al. Universal energy-level alignment of molecules on metal oxides. Nature Mater. 11, 76–81 (2012).

Blom, P. W. M., Mihailetchi, V. D., Koster, L. J. A. & Markov, D. E. Device physics of polymer:fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551–1566 (2007).

Shuttle, C. G., Hamilton, R., O'Regan, B. C., Nelson, J. & Durrant, J. R. Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices. Proc. Natl Acad. Sci. USA 107, 16448–16452 (2010).

Pettersson, L. A. A., Lucimara, S. R. & Inganas, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999).

Shrotriya, V. et al. Accurate measurement and characterization of organic solar cells. Adv. Funct. Mater. 16, 2016–2023 (2006).