Hoạt động quang xúc tác được tăng cường trong màng mỏng composite BaTiO3 phân tán hạt nano Ag: Vai trò của chuyển giao điện tích

Journal of Advanced Ceramics - Tập 6 - Trang 1-10 - 2017
Suwei Zhang1, Bo-ping Zhang1, Shun Li1, Zhicheng Huang1, Chushu Yang1, Huiying Wang1
1Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China

Tóm tắt

Khả năng hấp thụ quang và hoạt động quang xúc tác có thể được cải thiện bởi hiệu ứng cộng hưởng plasmon bề mặt (SPR), nhưng cơ chế chuyển giao điện tích (CT) giữa các hạt nano kim loại quý (NPs) phân tán và ma trận bán dẫn đã bị bỏ qua. Trong nghiên cứu này, chúng tôi đưa ra bằng chứng trực tiếp và mạnh mẽ trong các màng composite Ag-nanoparticle-dispersed BaTiO3 (Ag/BTO) thông qua phổ tia X quang phổ electron và phổ phát quang, cho thấy CT từ BTO bị giữ lại bởi các hạt nano Ag dưới ánh sáng UV và từ các hạt nano Ag đến BTO dưới ánh sáng nhìn thấy. Nhờ vào khả năng hấp thụ quang được mở rộng và hiệu quả CT từ các hạt nano Ag đến BTO, màng Ag25/BTO thể hiện hoạt động quang xúc tác tối ưu dưới việc chiếu sáng bằng ánh sáng nhìn thấy thay vì ánh sáng UV-Vis. Công trình của chúng tôi cung cấp một cái nhìn hữu ích để thiết kế các xúc tác quang plasmon hiệu quả cao thông qua việc xem xét hiệu ứng synergistic của CT giữa kim loại và bán dẫn đối với hoạt động quang xúc tác được tăng cường.

Từ khóa

#hoạt động quang xúc tác #nhiễu xạ điện tử #plasmon bề mặt #chuyển giao điện tích #vật liệu baTiO3

Tài liệu tham khảo

Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238: 37–38. Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293: 269–271. Hoffmann MR, Martin ST, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev 1995, 95: 69–96. Zhao W, Feng LL, Yang R, et al. Synthesis, characterization, and photocatalytic properties of Ag modified hollow SiO2/TiO2 hybrid microspheres. Appl Catal B: Environ 2011, 103: 181–189. Awazu K, Fujimaki M, Rockstuhl C, et al. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 2008, 130: 1676–1680. Maeda K, Takata T, Hara M, et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J Am Chem Soc 2005, 127: 8286–8287. Zhang J, Yu J, Zhang Y, et al. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett 2011, 11: 4774–4779. Maeda K. Rhodium-doped barium titanate perovskite as a stable p-type semiconductor photocatalyst for hydrogen evolution under visible light. ACS Appl Mater Interfaces 2014, 6: 2167–2173. Li L, Salvador PA, Rohrer GS. Photocatalysts with internal electric fields. Nanoscale 2014, 6: 24–42. Subramanian V, Wolf EE, Kamat PV. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration. J Am Chem Soc 2004, 126: 4943–4950. Rupa AV, Manikandan D, Divakar D, et al. Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of Reactive Yellow-17. J Hazard Mater 2007, 147: 906–913. Height MJ, Pratsinis SE, Mekasuwandumrong O, et al. Ag–ZnO catalysts for UV-photodegradation of methylene blue. Appl Catal B: Environ 2006, 63: 305–312. Zhang X, Chen YL, Liu R-S, et al. Plasmonic photocatalysis. Rep Prog Phys 2013, 76: 046401. Wold A. Photocatalytic properties of titanium dioxide (TiO2). Chem Mater 1993, 5: 280–283. Lai Y, Meng M, Yu Y. One-step synthesis, characterizations and mechanistic study of nanosheetsconstructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation. Appl Catal B: Environ 2010, 100: 491–501. Ren C, Yang B, Wu M, et al. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J Hazard Mater 2010, 182: 123–129. Lu W, Gao S, Wang J. One-pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance. J Phys Chem C 2008, 112: 16792–16800. Bian ZF, Tachikawa T, Zhang P, et al. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J Am Chem Soc 2014, 136: 458–465. Ingram DB, Linic S. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: Evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 2011, 133: 5202–5205. Yang Y, Shi J, Huang W, et al. Preparation and optical properties of gold nanoparticles embedded in barium titanate thin films. J Mater Sci 2003, 38: 1243–1248. Zhang SW, Zhang BP, Li S, et al. SPR enhanced photocatalytic properties of Au-dispersed amorphous BaTiO3 nanocomposite thin films. J Alloys Compd 2016, 654: 112–119. Masaki Y, Koutzarov IP, Ruda HE, et al. Goldparticle-enhanced crystallite growth of thin films of barium titanate prepared by the sol–gel process. J Am Ceram Soc 1998, 81: 1074–1076. Fan H, Li H, Liu B, et al. Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst. ACS Appl Mater Interfaces 2012, 4: 4853–4857. Liu J, Sun Y, Li Z. Ag loaded flower-like BaTiO3 nanotube arrays: Fabrication and enhanced photocatalytic property. CrystEngComm 2012, 14: 1473–1478. Su R, Shen YJ, Li L, et al. Silver-modified nanosized ferroelectrics as a novel photocatalyst. Small 2015, 11: 202–207. Li Y, Zhang B-P, Zhao C-H, et al. Structure transition, formation, and optical absorption property study of Ag/SiO2 nanofilm by sol–gel method. J Mater Res 2012, 27: 3141–3146. Moulder JF, Chastain J, King RC. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data. Perkin-Elmer Eden Prairie, 1992. Cui Y, Briscoe J, Dunn S. Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3— Influence on the carrier separation and stern layer formation. Chem Mater 2013, 25: 4215–4223. López MDCB, Fourlaris G, Rand B, et al. Characterization of barium titanate powders: Barium carbonate identification. J Am Ceram Soc 1999, 82: 1777–1786. Yang Y, Wang X, Sun C, et al. Structure study of single crystal BaTiO3 nanotube arrays produced by the hydrothermal method. Nanotechnology 2009, 20: 055709. Chakraborty T, Ray S, Itoh M. Defect-induced magnetism: Test of dilute magnetism in Fe-doped hexagonal BaTiO3 single crystals. Phys Rev B 2011, 83: 144407. Kumar S, Raju VS, Kutty TRN. Investigations on the chemical states of sintered barium titanate by X-ray photoelectron spectroscopy. Appl Surf Sci 2003, 206: 250–261. Wang S, Zhang B. SPR propelled visible-active photocatalysis on Au-dispersed CO3O4 films. Appl Catal A: Gen 2013, 467: 585–592. Hövel H, Fritz S, Hilger A, et al. Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. Phys Rev B 1993, 48: 18178. Lermé J, Palpant B, Prével B, et al. Quenching of the size effects in free and matrix-embedded silver clusters. Phys Rev Lett 1998, 80: 5105. Kreibig U, Fragstein Cv. The limitation of electron mean free path in small silver particles. Z Physik 1969, 224: 307–323. Davis EA, Mott NF. Conduction in non-crystalline system V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos Mag 1970, 22: 903–922. Pankove JI. Optical Processes in Semiconductors. Courier Corporation, 2012. Gao F, Chen XY, Yin KB, et al. Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles. Adv Mater 2007, 19: 2889–2892. Lee M-K, Kim TG, Kim W, et al. Surface plasmon resonance (SPR) electron and energy transfer in noble metal-zinc oxide composite nanocrystals. J Phys Chem C 2008, 112: 10079–10082. Li X, Zhang Y, Ren X. Effects of localized surface plasmons on the photoluminescence properties of Au-coated ZnO films. Opt Express 2009, 17: 8735–8740. Michaelson HB. The work function of the elements and its periodicity. J Appl Phys 1977, 48: 4729–4733. Schulmeyer T, Paniagua SA, Veneman PA, et al. Modification of BaTiO3 thin films: Adjustment of the effective surface work function. J Mater Chem 2007, 17: 4563–4570. Zhou H, Qu Y, Zeid T, et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ Sci 2012, 5: 6732–6743. Xu Z, Quintanilla M, Vetrone F, et al. Harvesting lost photons: Plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Adv Funct Mater 2015, 25: 2950–2960. Linic S, Christopher P, Ingram DB. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 2011, 10: 911–921. Linic S, Christopher P, Xin H, et al. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. Acc Chem Res 2013, 46: 1890–1899. Cushing SK, Li J, Meng F, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 2012, 134: 15033–15041. Cushing SK, Wu N. Plasmon-enhanced solar energy harvesting. Electrochem Soc Interface Summer 2013, 22: 63–67. Lin Z, Wang X, Liu J, et al. On the role of localized surface plasmon resonance in UV–Vis light irradiated Au/TiO2 photocatalysis systems: Pros and cons. Nanoscale 2015, 7: 4114–4123. Bai S, Jiang J, Zhang Q, et al. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev 2015, 44: 2893–2939.