Nâng cao hiệu suất của máy phát nhiệt điện linh hoạt dựa trên mực Graphite/NiO thông qua gradient thành phần và quá trình nung NiO nanoparticle

Journal of Materials Science - Tập 58 - Trang 4901-4921 - 2023
Ramakrishna Nayak1, Prakasha Shetty2, M. Selvakumar2, Ashok Rao3, Mohan K. Rao4, Murari Mudiyaru Subrahmanya5, Akshayakumar Kompa4, Deepika U. Shanubhogue4
1Department of Humanities and Management, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
2Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
3Department of Physics, Centre for Clean Energy, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
4Department of Physics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
5DST PURSE Laboratory, Mangalore University, Mangalagangotri, India

Tóm tắt

Nghiên cứu này hướng tới việc tối ưu hóa mật độ công suất của các máy phát nhiệt điện linh hoạt dựa trên mực Graphite/NiO bằng cách thay đổi nồng độ của các hạt nano oxit niken được nung ở các nhiệt độ khác nhau. Các hạt nano NiO với cấu trúc rỗng, sai lệch vi mô cao, khuyết tật trong cấu trúc tinh thể và độ dẫn điện cao hơn do nhiệt độ nung thay đổi dẫn đến giảm nồng độ và tính di động của các hạt mang điện, điều này đã làm tăng đáng kể hệ số Seebeck, công suất đầu ra và mật độ công suất. Máy phát nhiệt điện linh hoạt in lưới bằng mực Graphite/NiO với khoảng 3,0 wt% hạt nano NiO được nung ở nhiệt độ 400 °C đã thể hiện hiệu suất vượt trội. Mật độ công suất tối đa, hệ số Seebeck và công suất đầu ra mà thiết bị này đạt được ở gradient nhiệt độ 100 °C lần lượt là 4,10 mW/m2, 47,06 µV/K và 0,80 nW. Nghiên cứu này chứng minh tính phù hợp của composite graphite và oxit niken cho máy phát nhiệt điện linh hoạt in lưới cho các ứng dụng ở nhiệt độ thấp.

Từ khóa

#máy phát nhiệt điện linh hoạt #mực Graphite/NiO #hạt nano oxit niken #mật độ công suất #hệ số Seebeck

Tài liệu tham khảo

Shittu S, Li G, Zhao X, Ma X (2020) Review of thermoelectric geometry and structure optimization for performance enhancement. Appl Energy 268:115075. https://doi.org/10.1016/j.apenergy.2020.115075 Aranguren P, Roch A, Stepien L et al (2016) Optimized design for flexible polymer thermoelectric generators. Appl Therm Eng 102:402–411. https://doi.org/10.1016/j.applthermaleng.2016.03.037 Bahrami A, Ying P, Wolff U et al (2021) Reduced lattice thermal conductivity for half-heusler ZrNiSn through cryogenic mechanical alloying. ACS Appl Mater Interfaces 13:38561–38568. https://doi.org/10.1021/acsami.1c05639 He S, Bahrami A, Zhang X et al (2022) Effect of powder ALD interface modification on the thermoelectric performance of bismuth. Adv Mater Technol 7:1–10. https://doi.org/10.1002/admt.202100953 Sarkar K, Debnath A, Deb K et al (2019) Effect of NiO incorporation in charge transport of polyaniline: improved polymer based thermoelectric generator. Energy 177:203–210. https://doi.org/10.1016/j.energy.2019.04.045 Liang L, Chen G, Guo C (2016) Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites. Compos Sci Technol 129:130–136. https://doi.org/10.1016/j.compscitech.2016.04.023 Du Y, Chen J, Liu X et al (2018) Flexible n-type tungsten carbide/polylactic acid thermoelectric composites fabricated by additive manufacturing. Coatings 8(1):1–7. https://doi.org/10.3390/coatings8010025 Madan D, Wang Z, Chen A et al (2012) Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators. ACS Appl Mater Interfaces 4:6117–6124. https://doi.org/10.1021/am301759a Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23:913–935. https://doi.org/10.1016/S1359-4311(03)00012-7 Wang Y, Zhu W, Deng Y et al (2020) Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 73:104773. https://doi.org/10.1016/j.nanoen.2020.104773 Yang K, Cho K, Yang S et al (2019) A laterally designed all-in-one energy device using a thermoelectric generator-coupled micro supercapacitor. Nano Energy 60:667–672. https://doi.org/10.1016/j.nanoen.2019.04.016 Hajakbari F, Taheri Afzali M, Hojabri A (2017) Nanocrystalline nickel oxide (NiO) thin films grown on quartz substrates: influence of annealing temperatures. Acta Phys Pol A 131:417–419. https://doi.org/10.12693/APhysPolA.131.417 Chernyshova E, Serhiienko I, Kolesnikov E et al (2021) Influence of NiO nanoparticles on the thermoelectric properties of (ZnO)1–x(NiO)x composites. Nanobiotechnol Rep 16:381–386. https://doi.org/10.1134/s2635167621030034 Khare PS, Jain S (2019) Enhancing thermoelectric response of NiO through nanostructuring. Int J Ind Electron Electr Eng 7:59–63 Linnera J, Sansone G, Maschio L, Karttunen AJ (2018) Thermoelectric properties of p-Type Cu2O, CuO, and NiO from hybrid density functional theory. J Phys Chem C 122:15180–15189. https://doi.org/10.1021/acs.jpcc.8b04281 Jain S, Khare PS (2019) Analysis of thermoelectric parameters of silver doped NiO nanoparticles. Int J Sci Res Publ 9:567–575. https://doi.org/10.29322/ijsrp.9.03.2019.p8778 Jain S, Swarup P (2019) Analysis of thermoelectric properties of light rare earth (La, Ce) doped nickel oxide nanoparticles. IOSR J Appl Phys 11:75–85. https://doi.org/10.9790/4861-1102017585 Shin W, Murayama N (2000) High performance p-type thermoelectric oxide based on NiO. Mater Lett 45:302–306. https://doi.org/10.1016/S0167-577X(00)00122-1 Dong X, Gan Y, Dong L et al (2013) Improvement of thermoelectric properties of WO3 ceramics by NiO addition. J Mater Sci Mater Electron 24:4316–4320. https://doi.org/10.1007/s10854-013-1404-y He S, Lehmann S, Bahrami A, Nielsch K (2021) Current state-of-the-art in the interface/surface modification of thermoelectric materials. Adv Energy Mater 11:2101877. https://doi.org/10.1002/aenm.202101877 He S, Bahrami A, Ying P et al (2022) Improving the thermoelectric performance of ZrNi(In, Sb)-based double half-Heusler compounds. J Mater Chem A 10:13476–13483. https://doi.org/10.1039/d2ta02413f Atak G, Coşkun ÖD (2017) Annealing effects of NiO thin films for all-solid-state electrochromic devices. Solid State Ionics 305:43–51. https://doi.org/10.1016/j.ssi.2017.05.002 Watling JR, Paul DJ (2011) A study of the impact of dislocations on the thermoelectric properties of quantum wells in the Si/SiGe materials system. J Appl Phys 110:114508. https://doi.org/10.1063/1.3665127 Jiang Y, Zhang Y, Xing J et al (2021) Assessment of the thermoelectric performance of layered semiconductor SrFCuTe with wide band-gap. J Solid State Chem 299:122169. https://doi.org/10.1016/j.jssc.2021.122169 Wu Y, Zhang DB, Zhao Z et al (2021) Enhanced thermoelectric properties of ZnO: C doping and band gap tuning. J Eur Ceram Soc 41:1324–1331. https://doi.org/10.1016/j.jeurceramsoc.2020.09.042 Su X, Zhao N, Hao S et al (2019) High thermoelectric performance in the wide band-gap AgGa1–xTe2 compounds: directional negative thermal expansion and intrinsically low thermal conductivity. Adv Funct Mater 29:1806534 Lin JM, Chen YC, Lin CP (2013) Annealing Effect on the Thermoelectric Properties of Bi2Te3 Thin Films Prepared by Thermal Evaporation Method. J Nanomater 2013:201017. https://doi.org/10.1155/2013/201017 Haq Iu, Jacob J, Mehboob K et al (2021) Effect of annealing temperature on the thermoelectric properties of ZnInO thin films grown by physical vapor deposition. Phys B Condens Matter 606:412569. https://doi.org/10.1016/j.physb.2020.412569 Du Y, Li H, Jia X et al (2018) Preparation and thermoelectric properties of graphite/poly(3,4-ethyenedioxythiophene) nanocomposites. Energies 11:4–12. https://doi.org/10.3390/en11102849 Mokhena TC, Mochane MJ, Sefadi JS et al (2018) Thermal Conductivity of Graphite-Based Polymer Composites. In: Shahzad A (ed) Impact of Thermal Conductivity on Energy Technologies, 1st edn. IntechOpen, UK, p 181–197 Tran VT, Saint-Martin J, Dollfus P, Volz S (2018) High thermoelectric performance of graphite nanofibers. Nanoscale 10:3784–3791. https://doi.org/10.1039/c7nr07817j Yemata TA, Ye Q, Zhou H et al (2017) Conducting polymer-based thermoelectric composites: principles, processing, and applications. Elsevier, UK Das S, Singha P, Deb AK et al (2019) Role of graphite on the thermoelectric performance of Sb2Te3/graphite nanocomposite. J Appl Phys 125:195105. https://doi.org/10.1063/1.5095935 Atiqah TN, Tan SJ, Foo KL et al (2018) Effect of graphite loading on properties of polyaniline/graphite composites. Polym Bull 75:209–220. https://doi.org/10.1007/s00289-017-2031-1 Nayak R, Shetty P, Selvakumar M et al (2022) Formulation of new screen printable PANI and PANI/Graphite based inks: printing and characterization of flexible thermoelectric generators. Energy 238 PART A:121680. https://doi.org/10.1016/j.energy.2021.121680 Jafari A, Pilban Jahromi S, Boustani K et al (2019) Evolution of structural and magnetic properties of nickel oxide nanoparticles: influence of annealing ambient and temperature. J Magn Magn Mater 469:383–390. https://doi.org/10.1016/j.jmmm.2018.08.005 Saha B, Sarkar K, Bera A et al (2017) Schottky diode behaviour with excellent photoresponse in NiO/FTO heterostructure. Appl Surf Sci 418:328–334. https://doi.org/10.1016/j.apsusc.2017.01.142 Visweswaran S, Venkatachalapathy R, Haris M, Murugesan R (2020) Structural, morphological, optical and magnetic properties of sprayed NiO thin films by perfume atomizer. Appl Phys A Mater Sci Process 126:524. https://doi.org/10.1007/s00339-020-03709-w Gao J, Miao L, Lai H et al (2020) Thermoelectric flexible silver selenide films: compositional and length optimization. iScience 23:100753. https://doi.org/10.1016/j.isci.2019.100753 Diallo A, Kaviyarasu K, Ndiaye S et al (2018) Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals. Green Chem Lett Rev 11:166–175. https://doi.org/10.1080/17518253.2018.1447604 Patil VP, Pawar S, Chougule M et al (2011) Effect of annealing on structural, morphological, electrical and optical studies of nickel oxide thin films. J Surf Eng Mater Adv Technol 01:35–41. https://doi.org/10.4236/jsemat.2011.12006 Bahari Molla Mahaleh Y, Sadrnezhaad SK, Hosseini D (2008) NiO nanoparticles synthesis by chemical precipitation and effect of applied surfactant on distribution of particle size. J Nanomater 2008:470595. https://doi.org/10.1155/2008/470595 El-Kemary M, Nagy N, El-Mehasseb I (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16:1747–1752. https://doi.org/10.1016/j.mssp.2013.05.018 Ain QT, Haq SH, Alshammari A et al (2019) The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model. Beilstein J Nanotechnol 10:901–911. https://doi.org/10.3762/BJNANO.10.91 Roussel F, King RCY, Kuriakose M et al (2015) Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth Met 199:196–204. https://doi.org/10.1016/j.synthmet.2014.11.020 Du Y, Shen SZ, Yang W et al (2012) Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite. Synth Met 161:2688–2692. https://doi.org/10.1016/j.synthmet.2011.09.044 Wang Y, Zhang SM, Deng Y (2016) Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. J Mater Chem A 4:3554–3559. https://doi.org/10.1039/c6ta01140c Ugraskan V, Karaman F (2021) Polyaniline/graphitic carbon nitride nanocomposites with improved thermoelectric properties. J Electron Mater 50:3455–3461. https://doi.org/10.1007/s11664-021-08856-1 Jaziri N, Boughamoura A, Müller J et al (2019) A comprehensive review of thermoelectric generators: technologies and common applications. Energy Rep 6:264–287. https://doi.org/10.1016/j.egyr.2019.12.011 Wang L, Zhang K (2020) Textile-based thermoelectric generators and their applications. Energy Environ Mater 3:67–79. https://doi.org/10.1002/eem2.12045 Leach RH, Pierce RJ (2007) Screen inks. The printing ink manual, 5th edn. Springer, Dordrecht, pp 599–634 Parimon N, Mamat MH, Banu IS et al (2021) Annealing temperature dependency of structural, optical and electrical characteristics of manganese-doped nickel oxide nanosheet array films for humidity sensing applications. Nanomater Nanotechnol 11:1–13. https://doi.org/10.1177/1847980420982788 Zhang H, Wang Y, Huang L et al (2016) Synthesis and thermoelectric properties of n-type half-Heusler compound VCoSb with valence electron count of 19. J Alloys Compd 654:321–326. https://doi.org/10.1016/j.jallcom.2015.09.082 Liu Y, Lan J, Xu W et al (2013) Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chem Commun 49:8075–8077. https://doi.org/10.1039/c3cc44578j Feng B, Li G, Hou Y et al (2017) Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap. J Alloys Compd 712:386–393. https://doi.org/10.1016/j.jallcom.2017.04.121 Cai J, Zhang Y, Yin Y et al (2020) Investigating the thermoelectric performance of n-type SnSe: the synergistic effect of NbCl5 doping and dislocation engineering. J Mater Chem C 8:13244–13252. https://doi.org/10.1039/d0tc02959a Ariyanta HA, Ivandini TA, Yulizar Y (2020) Novel NiO nanoparticles via phytosynthesis method: structural, morphological and optical properties. J Mol Struct 1227:129543. https://doi.org/10.1016/j.molstruc.2020.129543 Abdellah Ali SF, William LA, Fadl EA (2020) Cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate membranes for water desalination applications. Cellulose 27:9525–9543. https://doi.org/10.1007/s10570-020-03434-w Chang TC, Fuh YK, Tu SX, Lee YM (2015) Application of graphite nanoplatelet-based and nanoparticle composites to thermal interface materials. Micro Nano Lett 10:296–301. https://doi.org/10.1049/mnl.2014.0689 Sahoo P, Misra DK, Salvador J et al (2012) Microstructure and thermal conductivity of surfactant-free NiO nanostructures. J Solid State Chem 190:29–35. https://doi.org/10.1016/j.jssc.2012.01.052 Pecorini TJ (1997) A fracture mechanics approach to weld-line fracture in an amorphous cellulose acetate propionate. Polym Eng Sci 37:308–314. https://doi.org/10.1002/pen.11672 Wei Y, Li Y, Torah R, Tudor J (2015) Laser curing of screen and inkjet printed conductors on flexible substrates. In: Symposium on design, test, integration and packaging of MEMS/MOEMS, DTIP 2015. pp 4–7 Khan AU, Kobayashi K, Tang DM et al (2017) Nano–micro-porous skutterudites with 100% enhancement in ZT for high-performance thermoelectricity. Nano Energy 31:152–159. https://doi.org/10.1016/j.nanoen.2016.11.016 Mulla R, Dunnill CW (2020) Graphite-loaded cotton wool: a green route to highly-porous and solid graphite pellets for thermoelectric devices. Compos Commun 20:100345. https://doi.org/10.1016/j.coco.2020.04.011 Gorobinskii LV, Yurkov GY (2012) Effect of nickel oxide additive on properties of catalysts used in the reaction of selective oxidation of carbon monoxide. Russ J Appl Chem 85:1345–1350. https://doi.org/10.1134/S107042721209008X Liu D, Yan Z, Zhao Y et al (2021) Facile self-supporting and flexible Cu2S/PEDOT: PSS composite thermoelectric film with high thermoelectric properties for body energy harvesting. Results Phys 31:105061. https://doi.org/10.1016/j.rinp.2021.105061 Kong D, Zhu W, Guo Z, Deng Y (2019) High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting. Energy 175:292–299. https://doi.org/10.1016/j.energy.2019.03.060 Yan L, Shao M, Wang H et al (2011) High Seebeck effects from hybrid metal/polymer/metal thin-film devices. Adv Funct Mater 23:4120–4124. https://doi.org/10.1002/adma.201101634 Brito FP, Figueiredo L, Rocha LA et al (2016) Analysis of the effect of module thickness reduction on thermoelectric generator output. J Electron Mater 45:1711–1729. https://doi.org/10.1007/s11664-015-4182-x Ding D, Sun F, Xia F, Tang Z (2020) A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates. Nanoscale Adv 2:3244–3251. https://doi.org/10.1039/d0na00118j