Enhanced performance of core–shell structured sodium manganese hexacyanoferrate achieved by self-limiting Na+ –Cs+ ion exchange for sodium-ion batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Liu S, Li XZ, Huang B, Yang JW, Chen QQ, Li YW, Xiao SH. Controllable construction of yolk-shell Sn-Co@void@C and its advantages in Na-ion storage. Rare Met. 2021;40(9):2392. https://doi.org/10.1007/s12598-021-01729-w.
Li WJ, Han C, Cheng G, Chou SL, Liu HK, Dou SX. Chemical properties, structural properties, and energy storage applications of prussian blue analogues. Small. 2019;15(32):1900470. https://doi.org/10.1002/smll.201900470.
Wang D, Cai P, Zou GQ, Hou HS, Ji XB, Tian Y, Long Z. Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery. Rare Met. 2022;41(1):115. https://doi.org/10.1007/s12598-021-01743-y.
Zuo DX, Wang CP, Wu JW, Qiu HJ, Zhang Q, Han JJ, Liu XJ. Comprehensive study of Na2-xMnFe(CN)6 center dot yH2O cathodes with cube morphology: structure, valence state and electrochemical properties. Solid State Ion. 2019;340: 115025. https://doi.org/10.1016/j.ssi.2019.115025.
Jiang XL, Hu FD, Wang WX, Qiu JX, Zheng XW. Hierarchical polyhedron K2CoFe(CN)6 as promising cathode for rechargeable batteries. J Alloys Compd. 2019;774:315. https://doi.org/10.1016/j.jallcom.2018.09.314.
Xue LG, Li YT, Gao HC, Zhou WD, Lu XJ, Kaveevivitchai W, Manthiram A, Goodenough JB. Low-cost high-energy potassium cathode. J Am Chem Soc. 2017;139(6):2164. https://doi.org/10.1021/jacs.6b12598.
Huang XZ, Xu Z, Ji ZG, Sun Q. Leaching and kinetics study of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode in spent LIBs. Chin J Rare Metals. 2020;44(8):860.
Chen CJ, Wang ZG, Zhang B, Miao L, Cai J, Peng LF, Huang YY, Jiang JJ, Huang YH, Zhang LN, Xie J. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 2017;8:161. https://doi.org/10.1016/j.ensm.2017.05.010.
Song J, Wang L, Lu YH, Liu J, Guo BK, Xiao PH, Lee JJ, Yang XQ, Henkelman G, Goodenough JB. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J Am Chem Soc. 2015;137(7):2658. https://doi.org/10.1021/ja512383b.
Xu Y, Ou MY, Liu Y, Xu J, Sun XP, Fang C, Li Q, Han JT, Huang YH. Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries. Nano Energy. 2020;67: 104250. https://doi.org/10.1016/j.nanoen.2019.104250.
Lu K, Zhang H, Gao SY, Cheng YW, Ma HY. High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid-state electrolytes. Nanoscale. 2018;10(44):20754. https://doi.org/10.1039/c8nr07268j.
He G, Nazar LF. Crystallite size control of Prussian white Analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017;2(5):1122. https://doi.org/10.1021/acsenergylett.7b00179.
Phadke S, Mysyk R, Anouti M. Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. J Energy Chem. 2020;40:31. https://doi.org/10.1016/j.jechem.2019.01.025.
Tang Y, Li W, Feng PY, Zhou M, Wang KL, Wang YS, Zaghib K, Jiang K. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv Funct Mater. 2020;30:1908754. https://doi.org/10.1002/adfm.201908754.
Zhao CL, Yao ZP, Zhou D, Jiang LW, Wang JL, Murzin V, Lu YX, Bai XD, Aspuru GA, Chen LQ, Hu YS. Constructing Na-Ion cathodes via alkali-site substitution. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.201910840.
Hu P, Peng WB, Wang B, Xiao DD, Ahuja U, Rethore J, Aifantis KE. Concentration-gradient prussian blue cathodes for Na-ion batteries. ACS Energy Lett. 2020;5(1):100. https://doi.org/10.1021/acsenergylett.9b02410.
Hu FD, Li L, Jiang XL. Hierarchical octahedral Na2MnFe(CN)6 and Na2MnFe(CN)6@Ppy as cathode materials for sodium-ion batteries. Chin J Chem. 2017;35(4):415. https://doi.org/10.1002/cjoc.201600713.
Moritomo Y, Urase S, Shibata T. Enhanced battery performance in manganese hexacyanoferrate by partial substitution. Electrochim Acta. 2016;210:963. https://doi.org/10.1016/j.electacta.2016.05.205.
Wang L, Lu YH, Liu J, Xu MW, Cheng JG, Zhang DW, Goodenough JB. A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed. 2013;52(7):1964. https://doi.org/10.1002/anie.201206854.
Mullaliu A, Asenbauer J, Aquilanti G, Passerini S, Giorgetti M. Highlighting the reversible manganese electroactivity in Na-rich manganese hexacyanoferrate material for Li- and Na-ion storage. Small Methods. 2019;4(1):1900529. https://doi.org/10.1002/smtd.201900529.
Wang H, Xu EZ, Yu SM, Li DT, Quan JJ, Xu L, Wang L, Jiang Y. Reduced graphene oxide-anchored manganese hexacyanoferrate with low interstitial H2O for superior sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(40):4222. https://doi.org/10.1021/acsami.8b11157.
Zhou AJ, Cheng WJ, Wang W, Zhao Q, Xie J, Zhang WX, Gao HC, Xue LG, Li JZ. Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv Energy Mater. 2021;11(2):2000943. https://doi.org/10.1002/aenm.202000943.
Peng FW, Yu L, Gao PY, Liao XZ, Wen JG, He YS, Tan GQ, Ren Y, Ma ZF. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes. J Mater Chem A. 2019;7(39):22248. https://doi.org/10.1039/c9ta08603j.
Jo IH, Lee SM, Kim HS, Jin BS. Electrochemical properties of NaxMnFe(CN)6·zH2O synthesized in a Taylor-Couette reactor as a Na-ion battery cathode material. J Alloys Compd. 2017;729:590. https://doi.org/10.1016/j.jallcom.2017.09.146.
Shen ZL, Guo SH, Liu CL, Sun YP, Chen Z, Tu J, Liu SY, Cheng JP, Xie J, Cao GS, Zhao XB. Na-rich Prussian white cathodes for long-life sodium-ion batteries. ACS Sustain Chem Eng. 2018;6(12):16121. https://doi.org/10.1021/acssuschemeng.8b02758.
Liu Y, Qiao Y, Zhang WX, Li Z, Ji X, Miao L, Yuan LX, Hu XL, Huang YH. Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy. 2015;12:386. https://doi.org/10.1016/j.nanoen.2015.01.012.
Huang YX, Xie M, Zhang JT, Wang ZH, Jiang Y, Xiao GH, Li SJ, Li L, Wu F, Chen RJ. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy. 2017;39:273. https://doi.org/10.1016/j.nanoen.2017.07.005.
Xie BX, Zuo PJ, Wang LG, Wang JJ, Huo H, He MX, Shu J, Li HF, Lou SF, Yin GP. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy. 2019;61:201. https://doi.org/10.1016/j.nanoen.2019.04.059.
Peng J, Wang JS, Yi HC, Hu WJ, Yu YH, Yin JW, Shen Y, Liu Y, Luo JiH XuY, Wei P, Li YY, Jin Y, Ding Y, Miao L, Jiang JJ, Han JT, Huang YH. A Dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs. Adv Energy Mater. 2018. https://doi.org/10.1002/aenm.201702856.
Zhou AJ, Xu ZM, Gao HC, Xue LG, Li JZ, Goodenough JB. Size-, water-, and defect-regulated potassium manganese hexacyanoferrate with superior cycling stability and rate capability for low-cost sodium-ion batteries. Small. 2019;15(42):1902420. https://doi.org/10.1002/smll.201902420.
Peng FW, Yu L, Yuan SQ, Liao XZ, Wen JG, Tan GQ, Feng F, Ma ZF. Enhanced electrochemical performance of sodium manganese ferrocyanide by Na3(VOPO4)2F coating for sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(41):37685. https://doi.org/10.1021/acsami.9b12041.
Zhu YH, Yin YB, Yang X, Sun T, Wang S, Jiang YS, Yan JM, Zhang XB. Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries. Angew Chem Int Ed. 2017;56(27):7881. https://doi.org/10.1002/anie.201702711.
Wang ZH, Huang YX, Luo R, Wu F, Li L, Xie M, Huang JQ, Chen RJ. Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability. J Power Sour. 2019;436: 226868. https://doi.org/10.1016/j.jpowsour.2019.226868.
Chen RJ, Huang YX, Xie M, Wang ZH, Ye YS, Li L, Wu F. Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes. ACS Appl Mater Interfaces. 2016;8(46):31669. https://doi.org/10.1021/acsami.6b10884.
Zhao Q, Wang W, Li YT, Wu N, Guo YD, Cheng WJ, Sun WW, Li JZ, Zhou AJ. Ion-exchange surface modification enhances cycling stability and kinetics of sodium manganese hexacyanoferrate cathode in sodium-ion batteries. Electrochim Acta. 2021;390: 138842. https://doi.org/10.1016/j.electacta.2021.138842.
Oliver TM, González MM, Osiry H, Ramos SG, González I. Electronic density distribution of Mn–N bonds by a tuning effect through partial replacement of Mn by Co or Ni in a sodium-rich hexacyanoferrate and its influence on the stability as a cathode for Na-ion batteries. Dalton Trans. 2018;47(46):16492. https://doi.org/10.1039/c8dt03595d.
Yin JW, Shen Y, Li C, Fan CY, Sun SX, Liu Y, Peng J, Qing L, Han JT. In situ self-assembly of core–shell multimetal prussian blue analogues for high-performance sodium-ion batteries. Chemsuschem. 2019;12:4786. https://doi.org/10.1002/cssc.201902013.
Wang BQ, Han Y, Chen YT, Xu YJ, Pan HG, Sun WP, Liu SY, Yan M, Jiang YZ. Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes. J Mater Chem A. 2018;6(19):8947. https://doi.org/10.1039/c8ta02291g.
Uemura T, Kitagawa S. Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc. 2003;125(26):7814. https://doi.org/10.1021/ja0356582.
Li WJ, Chou SL, Wang JZ, Wang JL, Gu QF, Liu HK, Dou SX. Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy. 2015;13:200. https://doi.org/10.1016/j.nanoen.2015.02.019.
Qiao Y, Wei GY, Cui JB, Zhang MM, Cheng XG, He DD, Li S, Liu Y. Prussian blue coupling with zinc oxide as a protective layer: an efficient cathode for high-rate sodium-ion batteries. ChemComm. 2019;55(4):549. https://doi.org/10.1039/c8cc07951j.
Liang J, Tian B, Li SQ, Jiang CZ, Wu W. All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv Energy Mater. 2020;10(12):2000022. https://doi.org/10.1002/aenm.202000022.
Shen ZL, Sun YP, Xie J, Liu SY, Zhuang DG, Zhang GL, Zheng WQ, Cao GS, Zhao XB. Manganese hexacyanoferrate/graphene cathodes for sodium-ion batteries with superior rate capability and ultralong cycle life. Inorg Chem Front. 2018;5(11):2914. https://doi.org/10.1039/c8qi00768c.
Ling C, Chen JJ, Mizuno F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius. J Phys Chem C. 2013;117(41):21158. https://doi.org/10.1021/jp4078689.
Cai P, Momen R, Tian Y, Yang LW, Zou KY, Massoudi A, Deng WT, Hou HS, Zou GQ, Ji XB. Advanced pre-diagnosis method of biomass intermediates toward high energy dual-carbon potassium-ion capacitor. Adv Energy Mater. 2021;12(5):2103221. https://doi.org/10.1002/aenm.202103221.
Yang HM, Park CW, Lee KW, Lee BS, Kim I, Yoon IH. Polyvinyl alcohol-borate hydrogel containing Prussian blue for surface decontamination. J Radioanal Nucl Chem. 2018;316(3):955. https://doi.org/10.1007/s10967-018-5745-0.